45 resultados para SPECIES MYXOSPOREA
Resumo:
Semi-natural grasslands are the most important agricultural areas for biodiversity. The present study investigates the effects of traditional livestock grazing and mowing on plant species richness, the main emphasis being on cattle grazing in mesic semi-natural grasslands. The two reviews provide a thorough assessment of the multifaceted impacts and importance of grazing and mowing management to plant species richness. It is emphasized that livestock grazing and mowing have partially compensated the suppression of major natural disturbances by humans and mitigated the negative effects of eutrophication. This hypothesis has important consequences for nature conservation: A large proportion of European species originally adapted to natural disturbances may be at present dependent on livestock grazing and / or mowing. Furthermore, grazing and mowing are key management methods to mitigate effects of nutrient-enrichment. The species composition and richness in old (continuously grazed), new (grazing restarting 3-8 years ago) and abandoned (over 10 years) pastures differed consistently across a range of spatial scales, and was intermediate in new pastures compared to old and abandoned pastures. In mesic grasslands most plant species were shown to benefit from cattle grazing. Indicator species of biologically valuable grasslands and rare species were more abundant in grazed than in abandoned grasslands. Steep S-SW-facing slopes are the most suitable sites for many grassland plants and should be prioritized in grassland restoration. The proportion of species trait groups benefiting from grazing was higher in mesic semi-natural grasslands than in dry and wet grasslands. Consequently, species trait responses to grazing and the effectiveness of the natural factors limiting plant growth may be intimately linked High plant species richness of traditionally mowed and grazed areas is explained by numerous factors which operate on different spatial scales. Particularly important for maintaining large scale plant species richness are evolutionary and mitigation factors. Grazing and mowing cause a shift towards the conditions that have occurred during the evolutionary history of European plant species by modifying key ecological factors (nutrients, pH and light). The results of this Dissertation suggest that restoration of semi-natural grasslands by private farmers is potentially a useful method to manage biodiversity in the agricultural landscape. However, the quality of management is commonly improper, particularly due to financial constraints. For enhanced success of restoration, management regulations in the agri-environment scheme need to be defined more explicitly and the scheme should be revised to encourage management of biodiversity.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Resumo:
One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.
Resumo:
The thesis provides a proposal to divide Alycidae G. Canestrini & Fanzago into two subfamilies and four tribes. This new hierarchy is based on a reassessment and reranking of new and previously known synapomorphies of the clusters concerned by cladistic analysis, using 60 morphological characters for 48 ingroup species. The basic characters of the taxa are illustrated either by SEM micrographs (Scanning Electron Microscopy) or by outline drawings. The presented classification includes the definitions of Alycini G. Canestrini & Fanzago new rank; Bimichaeliini Womersley new rank; Petralycini new rank; and the (re)descriptions of Alycus C.L. Koch, Pachygnathus Dugès, Amphialycus Zachvatkin, Bimichaelia Thor and Laminamichaelia gen. nov. The species described or redescribed are: Pachygnathus wasastjernae sp. nov. from Kvarken (Merenkurkku), Finland; Pachygnathus villosus Dugès (in Oken); Alycus roseus C.L. Koch; Alycus denasutus (Grandjean) comb. and stat. nov.; Alycus trichotus (Grandjean) comb. nov.; Alycus marinus (Schuster) comb. nov.; Amphialycus (Amphialycus) pentophthalmus Zachvatkin; Amphialycus (Amphialycus) leucogaster (Grandjean); and Amphialycus (Orthacarus) oblongus (Halbert) comb. nov.; Bimichaelia augustana (Berlese); Bimichaelia sarekensis Trägårdh; Laminamichaelia setigera (Berlese) comb. nov.; Laminamichelia arbusculosa (Grandjean) comb. nov.; Laminamichelia subnuda (Berlese) comb. nov. and Petralycus unicornis Grandjean. Fourteen nominal species were found to be junior synonymies. The importance of sensory organs in taxonomy is well recognized, but inclusion of the elaborate skin pattern seemed to improve essentially the usefulness of the prodorsal sensory area. The detailed pictures of the prodorsa of the European alycids could be used like passport photographs for the species. A database like this of prodorsa of other mite taxa as well might be an answer to future needs of species identification in soil zoology, ecology and conservation.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.
Resumo:
Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.
Resumo:
Increasing antimicrobial resistance in bacteria has led to the need for better understanding of antimicrobial usage patterns. In 1999, the World Organisation for Animal Health (OIE) recommended that an international ad hoc group should be established to address human and animal health risks related to antimicrobial resistance and the contribution of antimicrobial usage in veterinary medicine. In European countries the need for continuous recording of the usage of veterinary antimicrobials as well as for animal species-specific and indication-based data on usage has been acknowledged. Finland has been among the first countries to develop prudent use guidelines in veterinary medicine, as the Ministry of Agriculture and Forestry issued the first animal species-specific indication-based recommendations for antimicrobial use in animals in 1996. These guidelines have been revised in 2003 and 2009. However, surveillance on the species-specific use of antimicrobials in animals has not been performed in Finland. This thesis provides animal species-specific information on indication-based antimicrobial usage. Different methods for data collection have been utilized. Information on antimicrobial usage in animals has been gathered in four studies (studies A-D). Material from studies A, B and C have been used in an overlapping manner in the original publications I-IV. Study A (original publications I & IV) presents a retrospective cross-sectional survey on prescriptions for small animals at the Veterinary Teaching Hospital of the University of Helsinki. Prescriptions for antimicrobial agents (n = 2281) were collected and usage patterns, such as the indication and length of treatment, were reviewed. Most of the prescriptions were for dogs (78%), and primarily for the treatment of skin and ear infections most of which were treated with cephalexin for a median period of 14 days. Prescriptions for cats (18%) were most often for the treatment of urinary tract infections with amoxicillin for a median length of 10 days. Study B (original publication II) was a retrospective cross-sectional survey where prescriptions for animals were collected from 17 University Pharmacies nationwide. Antimicrobial prescriptions (n = 1038) for mainly dogs (65%) and cats (19%) were investigated. In this study, cephalexin and amoxicillin were also the most frequently used drugs for dogs and cats, respectively. In study C (original publications III & IV), the indication-based usage of antimicrobials of practicing veterinarians was analyzed by using a prospective questionnaire. Randomly selected practicing veterinarians in Finland (n = 262) recorded all their antimicrobial usage during a 7-day study period. Cattle (46%) with mastitis were the most common patients receiving antimicrobial treatment, generally intramuscular penicillin G or intramammary treatment with ampicillin and cloxacillin. The median length of treatment was four days, regardless of the route of administration. Antimicrobial use in horses was evaluated in study D, the results of which are previously unpublished. Firstly, data collected with the prospective questionnaire from the practicing veterinarians showed that horses (n = 89) were frequently treated for skin or wound infections by using penicillin G or trimethoprim-sulfadiazine. The mean duration of treatment was five to seven days. Secondly, according to retrospective data collected from patient records, horses (n = 74) that underwent colic surgery at the Veterinary Teaching Hospital of the University of Helsinki were generally treated according to national and hospital recommendations; penicillin G and gentamicin was administered preoperatively and treatment was continued for a median of three days postoperatively. In conclusion, Finnish veterinarians followed well the national prudent use guidelines. Narrow-spectrum antimicrobials were preferred and, for instance, fluoroquinolones were used sparingly. Prescription studies seemed to give good information on antimicrobials usage, especially when combined with complementary information from patient records. A prospective questionnaire study provided a fair amount of valuable data on several animal species. Electronic surveys are worthwhile exploiting in the future.
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.