18 resultados para Probability distributions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern sample surveys started to spread after statistician at the U.S. Bureau of the Census in the 1940s had developed a sampling design for the Current Population Survey (CPS). A significant factor was also that digital computers became available for statisticians. In the beginning of 1950s, the theory was documented in textbooks on survey sampling. This thesis is about the development of the statistical inference for sample surveys. For the first time the idea of statistical inference was enunciated by a French scientist, P. S. Laplace. In 1781, he published a plan for a partial investigation in which he determined the sample size needed to reach the desired accuracy in estimation. The plan was based on Laplace s Principle of Inverse Probability and on his derivation of the Central Limit Theorem. They were published in a memoir in 1774 which is one of the origins of statistical inference. Laplace s inference model was based on Bernoulli trials and binominal probabilities. He assumed that populations were changing constantly. It was depicted by assuming a priori distributions for parameters. Laplace s inference model dominated statistical thinking for a century. Sample selection in Laplace s investigations was purposive. In 1894 in the International Statistical Institute meeting, Norwegian Anders Kiaer presented the idea of the Representative Method to draw samples. Its idea was that the sample would be a miniature of the population. It is still prevailing. The virtues of random sampling were known but practical problems of sample selection and data collection hindered its use. Arhtur Bowley realized the potentials of Kiaer s method and in the beginning of the 20th century carried out several surveys in the UK. He also developed the theory of statistical inference for finite populations. It was based on Laplace s inference model. R. A. Fisher contributions in the 1920 s constitute a watershed in the statistical science He revolutionized the theory of statistics. In addition, he introduced a new statistical inference model which is still the prevailing paradigm. The essential idea is to draw repeatedly samples from the same population and the assumption that population parameters are constants. Fisher s theory did not include a priori probabilities. Jerzy Neyman adopted Fisher s inference model and applied it to finite populations with the difference that Neyman s inference model does not include any assumptions of the distributions of the study variables. Applying Fisher s fiducial argument he developed the theory for confidence intervals. Neyman s last contribution to survey sampling presented a theory for double sampling. This gave the central idea for statisticians at the U.S. Census Bureau to develop the complex survey design for the CPS. Important criterion was to have a method in which the costs of data collection were acceptable, and which provided approximately equal interviewer workloads, besides sufficient accuracy in estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myrkyllisten aineiden jakaumat ja vaikutusmallit jätealueiden ympäristöriskien analyysissä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.