36 resultados para Museum of Natural History (U.S)
Resumo:
Study of the Plantaginaceae for the Flora Mesoamericana project has resulted in five lectotypifications, a new combination in Rhodochiton, and the discovery of a new species of Tetranema from Honduras. This species, Tetranema michaelfayanum, is described here, a key to the species of Tetranema is provided, and the T. roseum complex is discussed.
Resumo:
For studies on the fern family Tectariaceae for the Flora of China, four species previously treated as Ctenitopsis need new combinations in Tectaria. The new combinations are proposed here and information on their types is provided.
Resumo:
To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985 to 1993) from ingrowth cores with known maximum root age (1 to 6 years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5mm). By contrast, in most of the samples of fine roots of larger diameter (1.5-2mm), the 14C age of root samples of 1987-89 exceeded the ingrowth core root maximum age by 1-10 years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots. Keywords: fine root age, Pinus sylvestris, radiocarbon, root carbon, ingrowth cores, tree ring
Resumo:
Background: Malaria was prevalent in Finland in the 18th century. It declined slowly without deliberate counter-measures and the last indigenous case was reported in 1954. In the present analysis of indigenous malaria in Finland, an effort was made to construct a data set on annual malaria cases of maximum temporal length to be able to evaluate the significance of different factors assumed to affect malaria trends. Methods: To analyse the long-term trend malaria statistics were collected from 1750–2008. During that time, malaria frequency decreased from about 20,000 – 50,000 per 1,000,000 people to less than 1 per 1,000,000 people. To assess the cause of the decline, a correlation analysis was performed between malaria frequency per million people and temperature data, animal husbandry, consolidation of land by redistribution and household size. Results: Anopheles messeae and Anopheles beklemishevi exist only as larvae in June and most of July. The females seek an overwintering place in August. Those that overwinter together with humans may act as vectors. They have to stay in their overwintering place from September to May because of the cold climate. The temperatures between June and July determine the number of malaria cases during the following transmission season. This did not, however, have an impact on the longterm trend of malaria. The change in animal husbandry and reclamation of wetlands may also be excluded as a possible cause for the decline of malaria. The long-term social changes, such as land consolidation and decreasing household size, showed a strong correlation with the decline of Plasmodium. Conclusion: The indigenous malaria in Finland faded out evenly in the whole country during 200 years with limited or no counter-measures or medication. It appears that malaria in Finland was basically a social disease and that malaria trends were strongly linked to changes in human behaviour. Decreasing household size caused fewer interactions between families and accordingly decreasing recolonization possibilities for Plasmodium. The permanent drop of the household size was the precondition for a permanent eradication of malaria.
Resumo:
Cortinarius is the largest genus of Agaricales with a worldwide distribution. So far, over 4000 Cortinarius names and combinations have been published. Cortinarius spp. form ectomycorrhizae with different trees and shrubs. A majority of the Cortinarius species have narrow ecological preferences and many form ectomycorrhiza with only one or few host species. The subgenus Telamonia sensu lato (s. lat.), comprising the greatest number of species, is the most poorly known of the subgenera of Cortinarius. The centre of diversity is in the northern hemisphere, although some species of the group are also recognized in the southern hemisphere. The aim of this thesis was to study the taxonomy of Cortinarius subgenus Telamonia p.p. species based on morphological and molecular data, as well as to study the ecology and distribution of the species in North Europe. The taxonomical problems encountered and the difficulty in finding and studying all the relevant names and types slowed down the study. The diversity of the subgenus Telamonia s. lat. in North Europe (excluding sect. Hydrocybe, Icrustati and Anomali) was found to be far greater than previously thought. Even many of the common species have not yet been described. So far, ca. 200 species have been recognised from the Nordic countries, but the sampling in most groups does not cover the whole diversity and especially the southern deciduous forest species are underrepresented in our study. In most cases phylogenetic (only based on ITS data) and morphological species recognition were in concordance, but in a few cases morphologically delimited species had almost identical ITS sequences, raising the question as to whether ITS is always variable enough for species recognition. The opposite situation, in which a morphologically uniform species included two phylogenetically distinct lineages, however, was also encountered, suggesting the possibility of cryptic species in Cortinarius. In our studies no taxa below species level were recognised and the aforementioned results indicate that presumably they can only be recognised genetically. Based on our preliminary results a revision of the infrageneric classification in Cortinarius subgenus Telamonia s. lat. is needed, and more sections should be established for a meaningful and functional classification. Many groups have turned out to be artificial, and it seems evident that many characteristics have been over- or underemphasised. Many morphological characteristics, however, are useful in the identification of telamonioid species and e.g. some spore characteristics have often been overlooked. Our studies have concentrated on North Europe, but we have found some similarities with North European and North American taxa.
Resumo:
This thesis examines assemblages of wood-decaying fungi in Finnish old-growth forests, and patterns of species interactions between fruit bodies of wood-rotting Basidiomycetes and associated Coleoptera. The present work is a summary of four original publications and a manuscript, which are based on empirical observations and deal with the prevalence of polypores in old-growth forests, and fungicolous Coleoptera. The study area consists of eleven old-growth, mostly spruce- and pine-dominated, protected forests rich in dead wood in northern and southeastern Finland. Supplementary data on fungus beetle interactions were collected in southern Finland and the Åland Islands. 11251 observations of fruit bodies from 153 polypore species were made in 789 forest compartments. Almost a half of the polypore species demonstrated a distinct northern or southeastern trend of prevalence. Polypores with a northern prevalence profile were in extreme cases totally absent from the Southeast, although almost uniformly present in the North. These were Onnia leporina, Climacocystis borealis, Antrodiella pallasii, Skeletocutis chrysella, Oligoporus parvus, Skeletocutis lilacina, and Junghuhnia collabens. Species with higher prevalence in the southeastern sites were Bjerkandera adusta, Inonotus radiatus, Trichaptum pargamenum, Antrodia macra, and Phellinus punctatus. 198 (86%) species of Finnish polypores were examined for associated Coleoptera. Adult beetles were collected from polypore basidiocarps in the wild, while their larvae were reared to adulthood in the lab. Spatial and temporal parallels between the properties of polypore fruit body and the species composition of Coleoptera in fungus beetle interactions were discussed. New data on the biology of individual species of fungivorous Coleoptera were collected. 116 species (50% of Finnish polypore mycota) were found to host adults and/or larvae of 179 species from 20 Coleoptera families. Many new fungus beetle interactions were found among the 614 species pairs; these included 491 polypore fruit body adult Coleoptera species co-occurrences, and 122 fruit body larva interrelations. 82 (41%) polypore species were neither visited nor colonized by Coleoptera. The total number of polyporicolous beetles in Finland is expected to reach 300 species.