22 resultados para Jackson City (Va.)--Maps, Manuscript.
Resumo:
In this thesis, I study the changing ladscape and human environment of the Mätäjoki Valley, West-Helsinki, using reconstructions and predictive modelling. The study is a part of a larger project funded by the city of Helsinki aming to map the past of the Mätäjoki Valley. The changes in landscape from an archipelago in the Ancylus Lake to a river valley are studied from 10000 to 2000 years ago. Alongside shore displacement, we look at the changing environment from human perspective and predict the location of dwelling sitesat various times. As a result, two map series were produced that show how the landscape changed and where inhabitance is predicted. To back them up, we have also looked at what previous research says about the history of the waterways, climate, vegetation and archaeology. The changing landscape of the river valley is reconstructed using GIS methods. For this purpose, new laser point data set was used and at the same time tested in the context landscape modelling. Dwelling sites were modeled with logistic regression analysis. The spatial predictive model combines data on the locations of the known dwelling sites, environmental factors and shore displacement data. The predictions were visualised into raster maps that show the predictions for inhabitance 3000 and 5000 years ago. The aim of these maps was to help archaeologists map potential spots for human activity. The produced landscape reconstructions clarified previous shore displacement studies of the Mätäjoki region and provided new information on the location of shoreline. From the shore displacement history of the Mätäjoki Valley arise the following stages: 1. The northernmost hills of the Mätäjoki Valley rose from Ancylus Lake approximately 10000 years ago. Shore displacement was fast during the following thousand years. 2. The area was an archipelago with a relatively steady shoreline 9000 7000 years ago. 8000 years ago the shoreline drew back in the middle and southern parts of the river valley because of the transgression of the Litorina Sea. 3. Mätäjoki was a sheltered bay of the Litorina Sea 6000 5000 years ago. The Vantaanjoki River started to flow into the Mätäjoki Valley approximately 5000 years ago. 4. The sediment plains in the southern part of the river valley rose from the sea rather quickly 5000 3000 years ago. Salt water still pushed its way into the southermost part of the valley 4000 years ago. 5. The shoreline proceeded to Pitäjänmäki rapids where it stayed at least a thousand years 3000 2000 years ago. The predictive models managed to predict the locations of dwelling sites moderately well. The most accurate predictions were found on the eastern shore and Malminkartano area. Of the environment variables sand and aspect of slope were found to have the best predictive power. From the results of this study we can conclude that the Mätäjoki Valley has been a favorable location to live especially 6000 5000 years ago when the climate was mild and vegetation lush. The laser point data set used here works best in shore displacement studies located in rural areas or if further specific palaeogeographic or hydrologic analysis in the research area is not needed.
Resumo:
Despite increasing interest in the discursive aspects of strategy, few studies have examined strategy texts and their power effects. We draw from Critical Discourse Analysis to better understand the power of strategic plans as a directive genre. In our empirical analysis, we examined the creation of the official strategic plan of the City of Lahti in Finland. As a result of our inductive analysis, we identified five central discursive features of this plan: self-authorization, special terminology, discursive innovation, forced consensus and deonticity. We argue that these features can, with due caution, be generalized and conceived as distinctive features of the strategy genre. We maintain that these discursive features are not trivial characteristics; they have important implications for the textual agency of strategic plans, their performative effects, impact on power relations and ideological implications.
Resumo:
Landscape is shaped by natural environment and increasingly by human activity. In landscape ecology, the concept of landscape can be defined as a kilometre-scale mosaic formed by different land-use types. In Helsinki Metropolitan Region, the landscape change caused by urbanization has accelerated after the 1950s. Prior to that, the landscape of the region was mainly only shaped by agriculture. The goal of this study was in addition to describing the landscape change to discuss the factors impacting the landscape change and evaluate thelandscape ecological impacts of the change. Three study areas at different distances from Helsinki city centre were chosen in order to look at the landscape change. Study areas were Malmi, Espoo and Mäntsälä regions representing different parts of the urban-to-rural gradient in 1955, 1975, 1990 and 2009. Land-use of the maps was then digitized into five classes: agricultural lands, semi-natural grasslands, built areas, waters and others using GIS methods. First, landscape change was studied using landscape ecological indices. Indices used were PLAND i.e. the proportions of the different land-use types in the landscape; MPS, SHEI and SHDI which describe fragmentation and heterogeneity of the landscape; and MSI and ED which are measures of patch shape. Second, landscape change was studied statistically in relation to topography, soil and urban structure of the study areas. Indicators used concerning urban structure were number of residents, car ownership and travel-related zones of urban form which indicate the degree of urban sprawl within the study areas. For the statistical analyses, each of the 9.25 x 9.25 km sized study areas was further divided into grids with resolution of 0.25 x 0.25 kilometres. Third, the changes in the green structure of the study areas were evaluated. The landscape change reflected by the proportions of the land-use types was the most notable in Malmi area where a large amount of agricultural land was developed from 1955 to 2009. The proportion of semi-natural grasslands also showed an interesting pattern in relation to urbanization. When urbanization started, a great number of agricultural lands were abandoned and turned into semi-natural grasslands but as the urbanization accelerated, the number of semi-natural grasslands started to decline because of urban densification. Landscape fragmentation and heterogeneity were the most widespread in Espoo study area which is not only because of the great differences in relative heights within the region but also its location in the rural-urban fringe. According to the results, urbanization induced agricultural lands to be more regular in shape both spatially and temporally whereas for built areas and semi-natural grasslands the impact of urbanization was reverse. Changes in landscape were the most insignificant in the most rural study area Mäntsälä. In Mäntsälä, built area per resident showed the greatest values indicating a widespread urban sprawl. The values were the smallest in highly urbanized Malmi study area. Unlike other study areas, in Mäntsälä the proportion of developing land in the ecologically disadvantageous cardependent zone was on the increase. On the other hand, the green structure of the Mäntsälä study area was the most advantageous whereas Malmi study area showed the most ecologically disadvantageous structure. Considering all the landscape ecological criteria used, the landscape structure of Espoo study area proved to be the best not least because of the great heterogeneity of its landscape. Thus the study confirmed the previous results according to which landscape heterogeneity is the most significant in areas exposed to a moderate human impact.
Resumo:
Participation is located in a living and complex environment. Traditional means of participation are only partially able to meet the new environmental requirements. In need are forms of participation which take into account the new opportunities of the environment and residents expertise. Internet map applications are an important channel of participation which potential is in many respects as unexplored and unutilized. They are commonly in inventory the perspectives, bringing out the concerns of the area, and only little for discussing about solutions. Interpretation is usually made by designer. This study focuses on evaluation and development of Internet map applications in strategic land use planning. Subject matter is dealt from designer and the inhabitants point of view. City Planning Department of Helsinki s Esikau-punkien Renessanssi -project and the associated SoftGIS survey acts as the case study. In the beginning of the study I tried to recognize the new environment in which the Internet map applications are placed. The research question is, what kind of challenges and opportunities the e-participation confronts in information society, and what kind of requirements the environmental creates for development of an application. In chapter three I evaluate how successfully these requirements are met in Esikau-punkien Renessanssi -project. I m trying to examine how the application would look like if the environment and the characteristics of the project are met better. The approach is experimental and I try to find new ways to take advantage of Internet maps. I try not to be too limited to current projects and studies. For example, I try to examine how social media and Web 2.0 opportunities can be utilized, and how the learning and shaping nature of planning may be reached in Internet map environment. In chapter four I have developed a new concept for the Esikaupunkien Renessanssi map application, and made images to visualize its operation in practice. I collect all the data in the research and gather it into a new service. The aim is to create a better application for Esikaupunkien Renessanssi -project, which takes into account the living and complex environment of participation and responds to threats and opportunities arising from it. The presented outcome is in many respects different from the current query. In the new service the role of residents is to interact and learn. The traditional standing of the Internet maps and the position of resident as one-sided information donor are questioned. In the concept, the residents innovate and make interpretations too. Influences are taken from a number of modern applications and for example services that make use of social media. The user experience is intended to be interactive, fast and easy. The idea is that the service keeps you up to date with planning matters, not the other way around. Service guides inhabitants, striving to achieve a deeper knowledge of the project's objectives as well as the dynamics and realities that different individuals experience.
Resumo:
Tiivistelmä
Resumo:
The aim of this thesis is to examine the skilled migrants’ satisfaction with the Helsinki Metropolitan Area. The examination is executed on three scales: housing, neighbourhoods and the city region. Specific focus is on the built environment and how it meets the needs of the migrants. The empirical data is formed of 25 semi-structured interviews with skilled migrants and additionally 5 expert interviews. Skilled and educated workforce is an increasingly important resource in the new economy, and cities are competing globally for talented workers. With aging population and a need to develop its innovational structure, the Helsinki Metropolitan Area needs migrant workforce. It has been stated that quality of place is a central factor for skilled migrants when choosing where to settle, and from this perspective their satisfaction with the region is significant. In housing, the skilled migrants found the price-quality ratio and the general sizes of apartments inadequate. The housing market is difficult for the migrants to approach, since they often do not speak Finnish and there are prejudices towards foreigners. The general quality of housing was rated well. On the neighbourhood level, the skilled migrants had settled in residential areas which are also preferred by the Finnish skilled workers. While the migrants showed suburban orientation in their settlement patterns, they were not concentrated in the suburban areas which host large shares of traditional immigrant groups. Migrants were usually satisfied with their neighbourhoods; however, part of the suburban dwellers were unsatisfied with the services and social life in their neighbourhoods. Considering the level of the city region, the most challenging feature for the skilled migrants was the social life. The migrants felt that the social environment is homogeneous and difficult to approach. The physical environment was generally rated well, the most appreciated features being public transportation, human scale of the Metropolitan Helsinki, cleanliness, and the urban nature. Urban culture and services were seen good for the city region’s size, but lacking in international comparison.
Resumo:
The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.