80 resultados para Inventory Models
Resumo:
The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image coordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface
Resumo:
In this study, a quality assessment method based on sampling of primary laser inventory units (microsegments) was analysed. The accuracy of a laser inventory carried out in Kuhmo was analysed as a case study. Field sample plots were measured on the sampled microsegments in the Kuhmo inventory area. Two main questions were considered. Did the ALS based inventory meet the accuracy requirements set for the provider and how should a reliable, cost-efficient and independent quality assessment be undertaken. The agreement between control measurement and ALS based inventory was analysed in four ways: 1) The root mean squared errors (RMSEs) and bias were calculated. 2) Scatter plots with 95% confidence intervals were plotted and the placing of identity lines was checked. 3) Bland-Altman plots were drawn so that the mean difference of attributes between the control method and ALS-method was calculated and plotted against average value of attributes. 4) The tolerance limits were defined and combined with Bland-Altman plots. The RMSE values were compared to a reference study from which the accuracy requirements had been set to the service provider. The accuracy requirements in Kuhmo were achieved, however comparison of RMSE values proved to be difficult. Field control measurements are costly and time-consuming, but they are considered to be robust. However, control measurements might include errors, which are difficult to take into account. Using the Bland-Altman plots none of the compared methods are considered to be completely exact, so this offers a fair way to interpret results of assessment. The tolerance limits to be set on order combined with Bland-Altman plots were suggested to be taken in practise. In addition, bias should be calculated for total area. Some other approaches for quality control were briefly examined. No method was found to fulfil all the required demands of statistical reliability, cost-efficiency, time efficiency, simplicity and speed of implementation. Some benefits and shortcomings of the studied methods were discussed.
Resumo:
An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.
Resumo:
In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.