25 resultados para Hydraulic structures.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.
Resumo:
New stars in galaxies form in dense, molecular clouds of the interstellar medium. Measuring how the mass is distributed in these clouds is of crucial importance for the current theories of star formation. This is because several open issues in them, such as the strength of different mechanism regulating star formation and the origin of stellar masses, can be addressed using detailed information on the cloud structure. Unfortunately, quantifying the mass distribution in molecular clouds accurately over a wide spatial and dynamical range is a fundamental problem in the modern astrophysics. This thesis presents studies examining the structure of dense molecular clouds and the distribution of mass in them, with the emphasis on nearby clouds that are sites of low-mass star formation. In particular, this thesis concentrates on investigating the mass distributions using the near infrared dust extinction mapping technique. In this technique, the gas column densities towards molecular clouds are determined by examining radiation from the stars that shine through the clouds. In addition, the thesis examines the feasibility of using a similar technique to derive the masses of molecular clouds in nearby external galaxies. The papers presented in this thesis demonstrate how the near infrared dust extinction mapping technique can be used to extract detailed information on the mass distribution in nearby molecular clouds. Furthermore, such information is used to examine characteristics crucial for the star formation in the clouds. Regarding the use of extinction mapping technique in nearby galaxies, the papers of this thesis show that deriving the masses of molecular clouds using the technique suffers from strong biases. However, it is shown that some structural properties can still be examined with the technique.
Resumo:
We begin an investigation of inhomogeneous structures in holographic superfluids. As a first example, we study domain wall like defects in the 3+1 dimensional Einstein-Maxwell-Higgs theory, which was developed as a dual model for a holographic superconductor. In [1], we reported on such "dark solitons" in holographic superfluids. In this work, we present an extensive numerical study of their properties, working in the probe limit. We construct dark solitons for two possible condensing operators, and find that both of them share common features with their standard superfluid counterparts. However, both are characterized by two distinct coherence length scales (one for order parameter, one for charge condensate). We study the relative charge depletion factor and find that solitons in the two different condensates have very distinct depletion characteristics. We also study quasiparticle excitations above the holographic superfluid, and find that the scale of the excitations is comparable to the soliton coherence length scales.
Resumo:
This paper summarizes literature explaining workplace bullying and focuses on organisational antecedents of bullying. In order to better understand the logic behind bullying, a model discussing different types of explanations is put forward. Thus, explanations for and factors associated with bullying are classified into three groups, i.e. enabling structures or necessary antecedents (e.g. perceived power imbalances, low perceived costs, and dissatisfaction and frustration), motivating structures or incentives (e.g. internal competition, reward systems, and expected benefits), and precipitating processes or triggering circumstances (e.g. downsizing and restructuring, organisational changes, changes in the composition of the workgroup). The paper concludes that bullying is often an interaction between structures and processes from all three groupings.
Resumo:
Mainstream research on management generally continues to ignore gender relations. Even so, over recent years there has been a major growth of international research on gender relations in organizations. Yet, most of this has focused on gender relations in lower or middle levels rather than at the apex of the organization. This book draws on research on gender policies, structures and practices of management in large Finnish corporations. It builds on earlier survey work of gender policies in the 100 largest corporations in Finland, to examine, through qualitative interviews, more detailed gendered processes in seven selected corporations. These represent corporations that are ‘relatively active’, ‘moderately active’, and ‘not active’ in relation to gender equality. Key issues include contrasts between formal policies and organizational practices; different corporate contexts and individual managers’ views; definition and scope of gender policy; and the relation of gender policies and diversity policy. This focus on gender policies is understood and located within organizational structures, most obviously gendered corporate hierarchies. Important structures include national context in relation to transnationalization, relations of headquarters and subsidiaries, and interrelations of management, policy development and policy implementation. Gender relations in practice and gender practices are considered in more detail. These women and men managers operate at the intersections of gendered transnational managerial work, careers and family-type relations, including marriage and children, or lack thereof. Women and men managers may be part of the same management levels or management teams, but have totally different family-type situations and gendered experiences. Interconnections of management, domestic life and transnationalizations are intensely gendered matters. The debate on the public/private continues to be important for both gender relations and organizational relations, but complicated through transnationalizations. The modern transnational corporation is considered in terms of gender divisions and gender power, with particular reference to top management. The concluding discussion notes implications for research and policy.
Resumo:
Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.
Resumo:
Pragmatism has sometimes been taken as a catchphrase for epistemological stances in which anything goes. However, other authors argue that the real novelty and contribution of this tradition has to do with its view of action as the context in which all things human take place. Thus, it is action rather than, for example, discourses that should be our starting point in social theory. The introductory section of the book situates pragmatism (especially the ideas of G. H. Mead and John Dewey) within the field and tradition of social theory. This introductory also contextualizes the main core of the book which consists of four chapters. Two of these chapters have been published as articles in scientific journals and one in an edited book. All of them discuss the core problem of social theory: how is action related to social structures (and vice versa)? The argument is that habitual action is the explanation for the emergence of social structures from our action. Action produces structures and social reproduction takes place when action is habitualized; that is, when we develop social dispositions to act in a certain manner in familiar environments. This also means that even though the physical environment is the same for all of us, our habits structure it into different kinds of action possibilities. Each chapter highlights these general insights from different angles. Practice theory has gained momentum in recent years and it has many commonalities with pragmatism because both highlight the situated and corporeal character of human activity. One famous proponent of practice theory is Margaret Archer who has argued that the pragmatism of G. H. Mead leads to an oversocialized conception of selfhood. Mead does indeed present a socialized view of selfhood but this is a meta-sociological argument rather than a substantial sociological claim. Accordingly, one can argue that in this general sense intersubjectivity precedes subjectivity and not the other way around. Such a view does not indicate that our social relation would necessarily "colonize" individual action because there is a place for internal conversations (in Archer s terminology); it is especially in those phases of action where it meets obstacles due to the changes of the environment. The second issue discussed has the background assumption that social structures can fruitfully be conceptualized as institutions. A general classification of different institution theories is presented and it is argued that there is a need for a habitual theory of institutions due to the problems associated with these other theories. So-called habitual institutionalism accounts for institutions in terms of established and prevalent social dispositions that structure our social interactions. The germs of this institution theory can be found in the work of Thorstein Veblen. Since Veblen s times, these ideas have been discussed for example, by the economist Geoffrey M. Hodgson. His ideas on the evolution of institutions are presented but a critical stance is taken towards his tendency of defining institutions with the help of rules because rules are not always present in institutions. Accordingly, habitual action is the most basic but by no means the only aspect of institutional reproduction. The third chapter deals with theme of action and structures in the context of Pierre Bourdieu s thought. Bourdieu s term habitus refers to a system of dispositions which structure social fields. It is argued that habits come close to the concept of habitus in the sense that the latter consists of particular kinds of habits; those that are related to the reproduction of socioeconomic positions. Habits are thus constituents of a general theory of societal reproduction whereas habitus is a systematic combination of socioeconomic habits. The fourth theme relates to issues of social change and development. The capabilities approach has been associated with the name of Amartya Sen, for example, and it underscores problems inhering in economistic ways of evaluating social development. However, Sen s argument has some theoretical problems. For example, his theory cannot adequately confront the problem of relativism. In addition, Sen s discussion lacks also a theory of the role of the public. With the help of arguments derived from pragmatism, one gets an action-based, socially constituted view of freedom in which the role of the public is essential. In general, it is argued that a socially constituted view of agency does not necessarily to lead to pessimistic conclusions about the freedom of action.
Resumo:
This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.
Resumo:
Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.