20 resultados para Human ecology - History
Resumo:
The aim of this thesis was to study ecology of Baltic Sea ice from two perspectives. In the first two studies, sea-ice ecology from riverine-influenced fast ice to drift ice in the Bothnian Bay was investigated, whereas the last two studies focus on the sensitivity of sea-ice bacteria and algae to UVA examined in situ. The seasonal sea ice cover is one of the main characteristics of the Baltic Sea, and despite the brackish parental water, the ice structure is similar to polar ice with saline brine inclusions, the sea ice habitat. The decreasing seawater salinity from the northern Baltic Sea to the Bothnian Bay translates to decreasing brine volumes along the gradient, governing the size and community structure of the food webs in ice. However, the drift and fast ice in the Bothnian Bay may differ greatly in this sense, as drift ice may have been formed at more southern locations. Rafting and the formation of snow ice are common processes in the ice field of the Bothnian Bay. As evidenced in this thesis, rafting altered the vertical distribution of organisms and snow-ice formation provided habitable space in the better-illuminated, nitrogen-rich surface layer. The divergence between fast and drift ice became apparent at the more advanced stages, and chlorophyte biomass decreased from fast to drift ice, while the opposite held true for protozoan and metazoan biomass. The brine volumes affected the communities somewhat, and a higher percentage of flagellate species was generally linked to lower brine volumes, whereas chain-forming diatoms were mostly concentrated in layers with larger brine volumes. These results add to knowledge of the ecological significance of the ice cover lasting up to 7 months per year in this area. Sea-ice food webs are generally light-limited, but while increasing light irradiances typically enhance the primary production and further, the secondary production in sea ice, any increase in solar radiation also includes an increase in harmful UVA radiation. The Baltic Sea ice microbial communities were clearly sensitive to UVA and the responses were strongly linked to the earlier light history, as well as to the solar irradiances they were exposed to. The increased biomass of chlorophytes and pennate diatoms, when UVA was excluded, indicates that their normally minor contribution to the biomass in the upper layers of sea ice might be partly dictated by UVA. The effects of UVA on bacterial production in Baltic Sea ice mostly followed the responses in algal growth, but occasionally the exposure to UVA even enhanced the bacterial production. The dominant bacterial class, Flavobacteria, seemed to be UVA-tolerant, whereas all the Alpha-, Beta- and Gammaproteobacteria present in the surface layer showed UVA sensitivity. These results indicate that changes in the light field of ice may alter the community structure and affect the functioning of ice food webs, and are of importance when the effects of thinning of the ice cover are assessed.
Resumo:
The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident with the southern distribution limits of individual evolutionary lineages. These areas are important in terms of long-term species persistence and therefore important areas for conservation.
Resumo:
To protect and restore lake ecosystems under threats posed by the increasing human population, information on their ecological quality is needed. Lake sediments provide a data rich archive that allows identification of various biological components present prior to anthropogenic alterations as well as a constant record of changes. By providing a longer dimension of time than any ongoing monitoring programme, palaeolimnological methods can help in understanding natural variability and long-term ecological changes in lakes. As zooplankton have a central role in the lake food web, their remains can potentially provide versatile information on past trophic structure. However, various taphonomic processes operating in the lakes still raise questions concerning how subfossil assemblages reflect living communities. This thesis work aimed at improving the use of sedimentary zooplankton remains in the reconstruction of past zooplankton communities and the trophic structure in lakes. To quantify interspecific differences in the accumulation of remains, the subfossils of nine pelagic zooplankton taxa in annually laminated sediments were compared with monitoring results for live zooplankton in Lake Vesijärvi. This lake has a known history of eutrophication and recovery, which resulted from reduced external loading and effective fishing of plankti-benthivorous fish. The response of zooplankton assemblages to these known changes was resolved using annually laminated sediments. The generality of the responses observed in Lake Vesijärvi were further tested with a set of 31 lakes in Southern Finland, relating subfossils in surface sediments to contemporary water quality and fish density, as well as to lake morphometry. The results demonstrated differential preservation and retention of cladoceran species in the sediment. Daphnia, Diaphanosoma and Ceriodaphnia were clearly underrepresented in the sediment samples in comparison to well-preserved Bosmina species, Chydorus, Limnosida and Leptodora. For well-preserved species, the annual net accumulation rate was similar to or above the expected values, reflecting effective sediment focusing and accumulation in the deepest part of the lake. The decreased fish density and improved water quality led to subtle changes in zooplankton community composition. The abundance of Diaphanosoma and Limnosida increased after the reduction in fish density, while Ceriodaphnia and rotifers decreased. The most sensitive indicator of fish density was the mean size of Daphnia ephippia and Bosmina (E.) crassicornis ephippia and carapaces. The concentration of plant-associated species increased, reflecting expanding littoral vegetation along with increasing transparency. Several of the patterns observed in Lake Vesijärvi could also be found within the set of 31 lakes. According to this thesis work, the most useful cladoceran-based indices for nutrient status and planktivorous fish density in Finnish lakes were the relative abundances of certain pelagic taxa, and the mean size of Bosmina spp. carapaces, especially those of Bosmina (E.) cf. coregoni. The abundance of plant-associated species reflected the potential area for aquatic plants. Lake morphometry and sediment organic content, however, explained a relatively high proportion of the variance in the species data, and more studies are needed to quantify lake-specific differences in the accumulation and preservation of remains. Commonly occurring multicollinearity between environmental variables obstructs the cladoceran-based reconstruction of single environmental variables. As taphonomic factors and several direct and indirect structuring forces in lake ecosystems simultaneously affect zooplankton, the subfossil assemblages should be studied in a holistic way before making final conclusions about the trophic structure and the change in lake ecological quality.
Resumo:
Background: Endemic northern malaria reached 68°N latitude in Europe during the 19th century, where the summer mean temperature only irregularly exceeded 16°C, the lower limit needed for sporogony of Plasmodium vivax. Because of the available historical material and little use of quinine, Finland was suitable for an analysis of endemic malaria and temperature. Methods: Annual malaria death frequencies during 1800–1870 extracted from parish records were analysed against long-term temperature records in Finland, Russia and Sweden. Supporting data from 1750–1799 were used in the interpretation of the results. The life cycle and behaviour of the anopheline mosquitoes were interpreted according to the literature. Results: Malaria frequencies correlated strongly with the mean temperature of June and July of the preceding summer, corresponding to larval development of the vector. Hatching of imagoes peaks in the middle of August, when the temperature most years is too low for the sporogony of Plasmodium. After mating some of the females hibernate in human dwellings. If the female gets gametocytes from infective humans, the development of Plasmodium can only continue indoors, in heated buildings. Conclusion: Northern malaria existed in a cold climate by means of summer dormancy of hypnozoites in humans and indoor transmission of sporozoites throughout the winter by semiactive hibernating mosquitoes. Variable climatic conditions did not affect this relationship. The epidemics, however, were regulated by the population size of the mosquitoes which, in turn, ultimately was controlled by the temperatures of the preceding summer.
Resumo:
Background: Malaria was prevalent in Finland in the 18th century. It declined slowly without deliberate counter-measures and the last indigenous case was reported in 1954. In the present analysis of indigenous malaria in Finland, an effort was made to construct a data set on annual malaria cases of maximum temporal length to be able to evaluate the significance of different factors assumed to affect malaria trends. Methods: To analyse the long-term trend malaria statistics were collected from 1750–2008. During that time, malaria frequency decreased from about 20,000 – 50,000 per 1,000,000 people to less than 1 per 1,000,000 people. To assess the cause of the decline, a correlation analysis was performed between malaria frequency per million people and temperature data, animal husbandry, consolidation of land by redistribution and household size. Results: Anopheles messeae and Anopheles beklemishevi exist only as larvae in June and most of July. The females seek an overwintering place in August. Those that overwinter together with humans may act as vectors. They have to stay in their overwintering place from September to May because of the cold climate. The temperatures between June and July determine the number of malaria cases during the following transmission season. This did not, however, have an impact on the longterm trend of malaria. The change in animal husbandry and reclamation of wetlands may also be excluded as a possible cause for the decline of malaria. The long-term social changes, such as land consolidation and decreasing household size, showed a strong correlation with the decline of Plasmodium. Conclusion: The indigenous malaria in Finland faded out evenly in the whole country during 200 years with limited or no counter-measures or medication. It appears that malaria in Finland was basically a social disease and that malaria trends were strongly linked to changes in human behaviour. Decreasing household size caused fewer interactions between families and accordingly decreasing recolonization possibilities for Plasmodium. The permanent drop of the household size was the precondition for a permanent eradication of malaria.