21 resultados para Gingival Neoplasms
Resumo:
Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.
A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH
Resumo:
Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.
Resumo:
Gliomas are the most frequent primary brain tumours. The cardinal features of gliomas are infiltrative growth pattern and progression from low-grade tumours to a more malignant phenotype. These features of gliomas generally prevent their complete surgical excision and cause their inherent tendency to recur after initial treatment and lead to poor long-term prognosis. Increasing knowledge about the molecular biology of gliomas has produced new markers that supplement histopathological diagnostics. Molecular markers are also used to evaluate the prognosis and predict therapeutic response. The purpose of this thesis is to study molecular events involved in the malignant progression of gliomas. Gliomas are highly vascularised tumours. Contrast enhancement in magnetic resonance imaging (MRI) reflects a disrupted blood-brain barrier and is often seen in malignant gliomas. In this thesis, 62 astrocytomas, oligodendrogliomas and oligoastrocytomas were studied by MRI and immunohistochemistry. Contrast enhancement in preoperative MRI was associated with angiogenesis, tumour cell proliferation and histological grade of gliomas. Activation of oncogenes by gene amplification is a common genetic aberration in gliomas. EGFR amplification on chromosome 7p12 occurs in 30-40% of glioblastomas. PDGFRA, KIT and VEGFR2 are receptor tyrosine kinase genes located on chromosome 4q12. Amplification of these genes was studied using in situ hybridisation in the primary and recurrent astrocytomas, oligodendrogliomas and oligoastrocytomas of 87 patients. PDGFRA, KIT or VEGFR2 amplification was found in 22% of primary tumours and 36% of recurrent tumours including low-grade and malignant gliomas. The most frequent aberration was KIT amplification, which occurred in 10% of primary tumours and in 27% of recurrent tumours. The expression of ezrin, cyclooxygenase 2 (COX-2) and HuR was studied immunohistochemically in a series of primary and recurrent gliomas of 113 patients. Ezrin is a cell membrane-cytoskeleton linking-protein involved in the migration of glioma cells. The COX-2 enzyme is implicated in the carcinogenesis of epithelial neoplasms and is overexpressed in gliomas. HuR is an RNA-stabilising protein, which regulates the expression of several proteins including COX-2. Ezrin, COX-2 and HuR were associated with histological grade and the overall survival of glioma patients. However, in multivariate analysis they were not independent prognostic factors. In conclusion, these results suggest that contrast enhancement in MRI can be used as a surrogate marker for the proliferative and angiogenic potential of gliomas. Aberrations of PDGFRA, KIT and VEGFR2 genes, as well as the dysregulated expression of ezrin, COX-2 and HuR proteins, are linked to the progression of gliomas.
Resumo:
Bad breath or oral malodour can be related to gingival diseases, trimethylaminuria, various inflammation diseases of upper respiratory tract, foreign bodies in nasal cavity etc. Bad breath is usually, in 85 % to 95 % of cases, inflicted by gram negative anaerobic bacteria in tongue coating. These bacteria have a tendency of producing foul-smelling sulphur containing gases called volatile sulphur compounds or VSC. Main cause of bad breath is parodontitis or postnasal drip into posterior part of the tongue. Detecting bad breath is most efficiently done by organoleptic method. By skilled analyser the reason for oral malodour can be determined with great accuracy. For scientific study the most effective method is gas chromatography (GC) with flame photometric detector (FPD). With it almost every component of exhaled air can be detected both quantitative and qualitative. Effective chairside methods include portable sulphur monitors and saliva tests.
Resumo:
Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.