25 resultados para Fluorescence-based Imaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anterior cruciate ligament (ACL) tear is a common sports injury of the knee. Arthroscopic reconstruction using autogenous graft material is widely used for patients with ACL instability. The grafts most commonly used are the patellar and the hamstring tendons, by various fixation techniques. Although clinical evaluation and conventional radiography are routinely used in follow-up after ACL surgery, magnetic resonance imaging (MRI) plays an important role in the diagnosis of complications after ACL surgery. The aim of this thesis was to study the clinical outcome of patellar and hamstring tendon ACL reconstruction techniques. In addition, the postoperative appearance of the ACL graft was evaluated using several MRI sequences. Of the 175 patients who underwent an arthroscopically assisted ACL reconstruction, 99 patients were randomized into patellar tendon (n=51) or hamstring tendon (n=48) groups. In addition, 62 patients with hamstring graft ACL reconstruction were randomized into either cross-pin (n=31) or interference screw (n=31) fixation groups. Follow-up evaluation determined knee laxity, isokinetic muscle performance and several knee scores. Lateral and anteroposterior view radiographs were obtained. Several MRI sequences were obtained with a 1.5-T imager. The appearance and enhancement pattern of the graft and periligamentous tissue, and the location of bone tunnels were evaluated. After MRI, arthroscopy was performed on 14 symptomatic knees. The results revealed no significant differences in the 2-year outcome between the groups. In the hamstring tendon group, the average femoral and tibial bone tunnel diameter increased during 2 years follow-up by 33% and 23%, respectively. In the asymptomatic knees, the graft showed homogeneous and low signal intensity with periligamentous streaks of intermediate signal intensity on T2-weighted MR images. In the symptomatic knees, arthroscopy revealed 12 abnormal grafts and two meniscal tears, each with an intact graft. Among 3 lax grafts visible on arthroscopy, MRI showed an intact graft and improper bone tunnel placement. For diagnosing graft failure, all MRI findings combined gave a specificity of 90% and a sensitivity of 81%. In conclusion, all techniques appeared to improve patients' performance, and were therefore considered as good choices for ACL reconstruction. In follow-up, MRI permits direct evaluation of the ACL graft, the bone tunnels, and additional disorders of the knee. Bone tunnel enlargement and periligamentous tissue showing contrast enhancement were non-specific MRI findings that did not signify ACL deficiency. With an intact graft and optimal femoral bone tunnel placement, graft deficiency is unlikely, and the MRI examination should be carefully scrutinized for possible other causes for the patients symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are, in developed countries, the leading cause of mortality. The majority of premature deaths and disability caused by CVD are due to atherosclerosis, a degenerating inflammatory disease affecting arterial walls. Early identification of lesions and initiation of treatment is crucial because the first manifestations quite often are major disabling cardiovascular events. Methods of finding individuals at high risk for these events are under development. Because magnetic resonance imaging (MRI) is an excellent non-invasive tool to study the structure and function of vascular system, we sought to discover whether existing MRI methods are able to show any difference in aortic and intracranial atherosclerotic lesions between patients at high risk for atherosclerosis and healthy controls. Our younger group (age 6-48) comprised 39 symptomless familial hypercholesterolemia (FH) patients and 25 healthy controls. Our older group (age 48-64) comprised 19 FH patients and 18 type 2 diabetes mellitus (DM) patients with coronary heart disease (CHD) and 29 healthy controls. Intracranial and aortic MRI was compared with carotid and femoral ultrasound (US). In neither age-group did MRI reveal any difference in the number of ischemic brain lesions or white matter hyperintensities (WMHIs) - possible signs of intracranial atherosclerosis - between patients and controls. Furthermore, MRI showed no difference in the structure or function of the aorta between FH patients and controls in either group. DM patients had lower compliance of the aorta than did controls, while no difference appeared between DM and FH patients. However, ultrasound showed greater plaque burden and increased thickness of carotid arterial walls in FH and DM patients in both age-groups, suggesting a more advanced atherosclerosis. The mortality of FH patients has decreased substantially after the late 1980´s when statin treatment became available. With statins, the progression of atherosclerotic lesions slows. We think that this, in concert with improvements in treatment of other risk factors, is one reason for the lack of differences between FH patients and controls in MRI measurements of the aorta and brain despite the more advanced disease of the carotid arteries assessed with US. Furthermore, whereas atherosclerotic lesions between different vascular territories correlate, differences might still exist in the extent and location of these lesions among different diseases. Small (<5 mm in diameter) WMHIs are more likely a phenomenon related to aging, but the larger ones may be the ones related to CVD and may be intermediate surrogates of stroke. The image quality in aortic imaging, although constantly improving, is not yet optimal and thus is a source of bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of the present study was to develop and test new digital imaging equipment and methods for diagnosis and follow-up of ocular diseases. Methods: The whole material comprised 398 subjects (469 examined eyes), including 241 patients with melanocytic choroidal tumours, 56 patients with melanocytic iris tumours, 42 patients with diabetes, a 52-year old patient with chronic phase of VKH disease, a 30-year old patient with an old blunt eye injury, and 57 normal healthy subjects. Digital 50° (Topcon TRC 50 IA) and 45° (Canon CR6-45NM) fundus cameras, a new handheld digital colour videocamera for eye examinations (MediTell), a new subtraction method using the Topcon Image Net Program (Topcon corporation, Tokyo, Japan), a new method for digital IRT imaging of the iris we developed, and Zeiss photoslitlamp with a digital camera body were used for digital imaging. Results: Digital 50° red-free imaging had a sensitivity of 97.7% and two-field 45° and 50° colour imaging a sensitivity of 88.9-94%. The specificity of the digital 45°-50° imaging modalities was 98.9-100% versus the reference standard and ungradeable images that were 1.2-1.6%. By using the handheld digital colour video camera only, the optic disc and central fundus located inside 20° from the fovea could be recorded with a sensitivity of 6.9% for detection of at least mild NPDR when compared with the reference standard. Comparative use of digital colour, red-free, and red light imaging showed 85.7% sensitivity, 99% specificity, and 98.2 % exact agreement versus the reference standard in differentiation of small choroidal melanoma from pseudomelanoma. The new subtraction method showed growth in four of 94 melanocytic tumours (4.3%) during a mean ±SD follow-up of 23 ± 11 months. The new digital IRT imaging of the iris showed the sphincter muscle and radial contraction folds of Schwalbe in the pupillary zone and radial structural folds of Schwalbe and circular contraction furrows in the ciliary zone of the iris. The 52-year-old patient with a chronic phase of VKH disease showed extensive atrophy and occasional pigment clumps in the iris stroma, detachment of the ciliary body with severe ocular hypotony, and shallow retinal detachment of the posterior pole in both eyes. Infrared transillumination imaging and fluorescein angiographic findings of the iris showed that IR translucence (p=0.53), complete masking of fluorescence (p=0.69), presence of disorganized vessels (p=0.32), and fluorescein leakage (p=1.0) at the site of the lesion did not differentiate an iris nevus from a melanoma. Conclusions: Digital 50° red-free and two-field 50° or 45° colour imaging were suitable for DR screening, whereas the handheld digital video camera did not fulfill the needs of DR screening. Comparative use of digital colour, red-free and red light imaging was a suitable method in the differentiation of small choroidal melanoma from different pseudomelanomas. The subtraction method may reveal early growth of the melanocytic choroidal tumours. Digital IRT imaging may be used to study changes of the stroma and posterior surface of the iris in various diseases of the uvea. It contributed to the revealment of iris atrophy and serous detachment of the ciliary body with ocular hypotony together with the shallow retinal detachment of the posterior pole as new findings of the chronic phase of VKH disease. Infrared translucence and angiographic findings are useful in differential diagnosis of melanocytic iris tumours, but they cannot be used to determine if the lesion is benign or malignant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute knee injury is a common event throughout life, and it is usually the result of a traffic accident, simple fall, or twisting injury. Over 90% of patients with acute knee injury undergo radiography. An overlooked fracture or delayed diagnosis can lead to poor patient outcome. The major aim of this thesis was retrospectively to study imaging of knee injury with a special focus on tibial plateau fractures in patients referred to a level-one trauma center. Multi-detector computed tomography (MDCT) findings of acute knee trauma were studied and compared to radiography, as well as whether non-contrast MDCT can detect cruciate ligaments with reasonable accuracy. The prevalence, type, and location of meniscal injuries in magnetic resonance imaging (MRI) were evaluated, particularly in order to assess the prevalence of unstable meniscal tears in acute knee trauma with tibial plateau fractures. The possibility to analyze with conventional MRI the signal appearance of menisci repaired with bioabsorbable arrows was also studied. The postoperative use of MDCT was studied in surgically treated tibial plateau fractures: to establish the frequency and indications of MDCT and to assess the common findings and their clinical impact in a level-one trauma hospital. This thesis focused on MDCT and MRI of knee injuries, and radiographs were analyzed when applica-ble. Radiography constitutes the basis for imaging acute knee injury, but MDCT can yield information beyond the capabilities of radiography. Especially in severely injured patients , sufficient radiographs are often difficult to obtain, and in those patients, radiography is unreliable to rule out fractures. MDCT detected intact cruciate ligaments with good specificity, accuracy, and negative predictive value, but the assessment of torn ligaments was unreliable. A total of 36% (14/39) patients with tibial plateau fracture had an unstable meniscal tear in MRI. When a meniscal tear is properly detected preoperatively, treatment can be combined with primary fracture fixation, thus avoiding another operation. The number of meniscal contusions was high. Awareness of the imaging features of this meniscal abnormality can help radiologists increase specificity by avoiding false-positive findings in meniscal tears. Postoperative menisci treated with bioabsorbable arrows showed no difference, among different signal intensities in MRI, among menisci between patients with operated or intact ACL. The highest incidence of menisci with an increased signal intensity extending to the meniscal surface was in patients whose surgery was within the previous 18 months. The results may indicate that a rather long time is necessary for menisci to heal completely after arrow repair. Whether the menisci with an increased signal intensity extending to the meniscal surface represent improper healing or re-tear, or whether this is just the earlier healing feature in the natural process remains unclear, and further prospective studies are needed to clarify this. Postoperative use of MDCT in tibial plateau fractures was rather infrequent even in this large trauma center, but when performed, it revealed clinically significant information, thus benefitting patients in regard to treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The methods for estimating patient exposure in x-ray imaging are based on the measurement of radiation incident on the patient. In digital imaging, the useful dose range of the detector is large and excessive doses may remain undetected. Therefore, real-time monitoring of radiation exposure is important. According to international recommendations, the measurement uncertainty should be lower than 7% (confidence level 95%). The kerma-area product (KAP) is a measurement quantity used for monitoring patient exposure to radiation. A field KAP meter is typically attached to an x-ray device, and it is important to recognize the effect of this measurement geometry on the response of the meter. In a tandem calibration method, introduced in this study, a field KAP meter is used in its clinical position and calibration is performed with a reference KAP meter. This method provides a practical way to calibrate field KAP meters. However, the reference KAP meters require comprehensive calibration. In the calibration laboratory it is recommended to use standard radiation qualities. These qualities do not entirely correspond to the large range of clinical radiation qualities. In this work, the energy dependence of the response of different KAP meter types was examined. According to our findings, the recommended accuracy in KAP measurements is difficult to achieve with conventional KAP meters because of their strong energy dependence. The energy dependence of the response of a novel large KAP meter was found out to be much lower than with a conventional KAP meter. The accuracy of the tandem method can be improved by using this meter type as a reference meter. A KAP meter cannot be used to determine the radiation exposure of patients in mammography, in which part of the radiation beam is always aimed directly at the detector without attenuation produced by the tissue. This work assessed whether pixel values from this detector area could be used to monitor the radiation beam incident on the patient. The results were congruent with the tube output calculation, which is the method generally used for this purpose. The recommended accuracy can be achieved with the studied method. New optimization of radiation qualities and dose level is needed when other detector types are introduced. In this work, the optimal selections were examined with one direct digital detector type. For this device, the use of radiation qualities with higher energies was recommended and appropriate image quality was achieved by increasing the low dose level of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.