23 resultados para Electromagnetic Bandgap
Resumo:
Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider.
Resumo:
Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider.
Resumo:
Physics teachers are in a key position to form the attitudes and conceptions of future generations toward science and technology, as well as to educate future generations of scientists. Therefore, good teacher education is one of the key areas of physics departments education program. This dissertation is a contribution to the research-based development of high quality physics teacher education, designed to meet three central challenges of good teaching. The first challenge relates to the organization of physics content knowledge. The second challenge, connected to the first one, is to understand the role of experiments and models in (re)constructing the content knowledge of physics for purposes of teaching. The third challenge is to provide for pre-service physics teachers opportunities and resources for reflecting on or assessing their knowledge and experience about physics and physics education. This dissertation demonstrates how these challenges can be met when the content knowledge of physics, the relevant epistemological aspects of physics and the pedagogical knowledge of teaching and learning physics are combined. The theoretical part of this dissertation is concerned with designing two didactical reconstructions for purposes of physics teacher education: the didactical reconstruction of processes (DRoP) and the didactical reconstruction of structures (DRoS). This part starts with taking into account the required professional competencies of physics teachers, the pedagogical aspects of teaching and learning, and the benefits of the graphical ways of representing knowledge. Then it continues with the conceptual and philosophical analysis of physics, especially with the analysis of experiments and models role in constructing knowledge. This analysis is condensed in the form of the epistemological reconstruction of knowledge justification. Finally, these two parts are combined in the designing and production of the DRoP and DRoS. The DRoP captures the knowledge formation of physical concepts and laws in concise and simplified form while still retaining authenticity from the processes of how concepts have been formed. The DRoS is used for representing the structural knowledge of physics, the connections between physical concepts, quantities and laws, to varying extents. Both DRoP and DRoS are represented in graphical form by means of flow charts consisting of nodes and directed links connecting the nodes. The empirical part discusses two case studies that show how the three challenges are met through the use of DRoP and DRoS and how the outcomes of teaching solutions based on them are evaluated. The research approach is qualitative; it aims at the in-depth evaluation and understanding about the usefulness of the didactical reconstructions. The data, which were collected from the advanced course for prospective physics teachers during 20012006, consisted of DRoP and DRoS flow charts made by students and student interviews. The first case study discusses how student teachers used DRoP flow charts to understand the process of forming knowledge about the law of electromagnetic induction. The second case study discusses how student teachers learned to understand the development of physical quantities as related to the temperature concept by using DRoS flow charts. In both studies, the attention is focused on the use of DRoP and DRoS to organize knowledge and on the role of experiments and models in this organization process. The results show that students understanding about physics knowledge production improved and their knowledge became more organized and coherent. It is shown that the flow charts and the didactical reconstructions behind them had an important role in gaining these positive learning results. On the basis of the results reported here, the designed learning tools have been adopted as a standard part of the teaching solutions used in the physics teacher education courses in the Department of Physics, University of Helsinki.
Resumo:
Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.
Resumo:
QCD factorization in the Bjorken limit allows to separate the long-distance physics from the hard subprocess. At leading twist, only one parton in each hadron is coherent with the hard subprocess. Higher twist effects increase as one of the active partons carries most of the longitudinal momentum of the hadron, x -> 1. In the Drell-Yan process \pi N -> \mu^- mu^+ + X, the polarization of the virtual photon is observed to change to longitudinal when the photon carries x_F > 0.6 of the pion. I define and study the Berger-Brodsky limit of Q^2 -> \infty with Q^2(1-x) fixed. A new kind of factorization holds in the Drell-Yan process in this limit, in which both pion valence quarks are coherent with the hard subprocess, the virtual photon is longitudinal rather than transverse, and the cross section is proportional to a multiparton distribution. Generalized parton distributions contain information on the longitudinal momentum and transverse position densities of partons in a hadron. Transverse charge densities are Fourier transforms of the electromagnetic form factors. I discuss the application of these methods to the QED electron, studying the form factors, charge densities and spin distributions of the leading order |e\gamma> Fock state in impact parameter and longitudinal momentum space. I show how the transverse shape of any virtual photon induced process, \gamma^*(q)+i -> f, may be measured. Qualitative arguments concerning the size of such transitions have been previously made in the literature, but without a precise analysis. Properly defined, the amplitudes and the cross section in impact parameter space provide information on the transverse shape of the transition process.
Resumo:
Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.