48 resultados para DNA CONTENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The publish/subscribe paradigm has lately received much attention. In publish/subscribe systems, a specialized event-based middleware delivers notifications of events created by producers (publishers) to consumers (subscribers) interested in that particular event. It is considered a good approach for implementing Internet-wide distributed systems as it provides full decoupling of the communicating parties in time, space and synchronization. One flavor of the paradigm is content-based publish/subscribe which allows the subscribers to express their interests very accurately. In order to implement a content-based publish/subscribe middleware in way suitable for Internet scale, its underlying architecture must be organized as a peer-to-peer network of content-based routers that take care of forwarding the event notifications to all interested subscribers. A communication infrastructure that provides such service is called a content-based network. A content-based network is an application-level overlay network. Unfortunately, the expressiveness of the content-based interaction scheme comes with a price - compiling and maintaining the content-based forwarding and routing tables is very expensive when the amount of nodes in the network is large. The routing tables are usually partially-ordered set (poset) -based data structures. In this work, we present an algorithm that aims to improve scalability in content-based networks by reducing the workload of content-based routers by offloading some of their content routing cost to clients. We also provide experimental results of the performance of the algorithm. Additionally, we give an introduction to the publish/subscribe paradigm and content-based networking and discuss alternative ways of improving scalability in content-based networks. ACM Computing Classification System (CCS): C.2.4 [Computer-Communication Networks]: Distributed Systems - Distributed applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online content services can greatly benefit from personalisation features that enable delivery of content that is suited to each user's specific interests. This thesis presents a system that applies text analysis and user modeling techniques in an online news service for the purpose of personalisation and user interest analysis. The system creates a detailed thematic profile for each content item and observes user's actions towards content items to learn user's preferences. A handcrafted taxonomy of concepts, or ontology, is used in profile formation to extract relevant concepts from the text. User preference learning is automatic and there is no need for explicit preference settings or ratings from the user. Learned user profiles are segmented into interest groups using clustering techniques with the objective of providing a source of information for the service provider. Some theoretical background for chosen techniques is presented while the main focus is in finding practical solutions to some of the current information needs, which are not optimally served with traditional techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this study is a tailless internal membrane-containing bacteriophage PRD1. It has a dsDNA genome with covalently bound terminal proteins required for replication. The uniqueness of the structure makes this phage a desirable object of research. PRD1 has been studied for some 30 years during which time a lot of information has accumulated on its structure and life-cycle. The two least characterised steps of the PRD1 life-cycle, the genome packaging and virus release are investigated here. PRD1 shares the main principles of virion assembly (DNA packaging in particular) and host cell lysis with other dsDNA bacteriophages. However, this phage has some fascinating individual peculiarities, such as DNA packaging into a membrane vesicle inside the capsid, absence of apparent portal protein, holin inhibitor and procapsid expansion. In the course of this study we have identified the components of the DNA packaging vertex of the capsid, and determined the function of protein P6 in packaging. We managed to purify the procapsids for an in vitro packaging system, optimise the reaction and significantly increase its efficiency. We developed a new method to determine DNA translocation and were able to quantify the efficiency and the rate of packaging. A model for PRD1 DNA packaging was also proposed. Another part of this study covers the lysis of the host cell. As other dsDNA bacteriophages PRD1 has been proposed to utilise a two-component lysis system. The existence of this lysis system in PRD1 has been proven by experiments using recombinant proteins and the multi-step nature of the lysis process has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different Norway spruce cutting clones growing in three environments with different soil and climatic conditions were studied. The purpose was to follow variation in the radial growth rate, wood properties and lignin content and to modify wood lignin with a natural monolignol, coniferyl alcohol, by making use of inherent wood peroxidases. In addition, the incorporation of chlorinated anilines into lignin was studied with synthetic model compounds and synthetic lignin preparations to show whether unnatural compounds originating from pesticides could be bound in the lignin polymer. The lignin content of heartwood, sapwood and earlywood was determined by applying Fourier transform infrared (FTIR) spectroscopy and a principal component regression (PCR) technique. Wood blocks were treated with coniferyl alcohol by using a vacuum impregnation method. The effect of impregnation was assessed by FTIR and by a fungal decay test. Trees from a fertile site showed the highest growth rate and sapwood lignin content and the lowest latewood proportion, weight density and modulus of rupture (MOR). Trees from a medium fertile site had the lowest growth rate and the highest latewood proportion, weight density, modulus of elasticity (MOE) and MOR. The most rapidly growing clone showed the lowest latewood proportion, weight density, MOE and MOR. The slowest growing clone had the lowest sapwood lignin content and the highest latewood proportion, weight density, MOE and MOR. Differences between the sites and clones were small, while fairly large variation was found between the individual trees and growing seasons. The cutting clones maintained clone-dependent wood properties in the different growing sites although variation between trees was high and climatic factors affected growth. The coniferyl alcohol impregnation increased the content of different lignin-type phenolic compounds in the wood as well as wood decay resistance against a white-rot fungus, Coriolus versicolor. During the synthetic lignin preparation 3,4-dichloroaniline became bound by a benzylamine bond to β-O-4 structures in the polymer and it could not be released by mild acid hydrolysis. The natural monolignol, coniferyl alcohol, and chlorinated anilines could be incorporated into the lignin polymer in vivo and in vitro, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esophageal and gastroesophageal junction (GEJ) adenocarcinoma is rapidly increasing disease with a pathophysiology connected to oxidative stress. Exact pre-treatment clinical staging is essential for optimal care of this lethal malignancy. The cost-effectiviness of treatment is increasingly important. We measured oxidative metabolism in the distal and proximal esophagus by myeloperoxidase activity (MPA), glutathione content (GSH), and superoxide dismutase (SOD) in 20 patients operated on with Nissen fundoplication and 9 controls during a 4-year follow-up. Further, we assessed the oxidative damage of DNA by 8-hydroxydeoxyguanosine (8-OHdG) in esophageal samples of subjects (13 Barrett s metaplasia, 6 Barrett s esophagus with high-grade dysplasia, 18 adenocarcinoma of the distal esophagus/GEJ, and 14 normal controls). We estimated the accuracy (42 patients) and preoperative prognostic value (55 patients) of PET compared with computed tomography (CT) and endoscopic ultrasound (EUS) in patients with adenocarcinoma of the esophagus/GEJ. Finally, we clarified the specialty-related costs and the utility of either radical (30 patients) or palliative (23 patients) treatment of esophageal/GEJ carcinoma by the 15 D health-related quality-of-life (HRQoL) questionnaire and the survival rate. The cost-utility of radical treatment of esophageal/GEJ carcinoma was investigated using a decision tree analysis model comparing radical, palliative, and hypothetical new treatment. We found elevated oxidative stress ( measured by MPA) and decreased antioxidant defense (measured by GSH) after antireflux surgery. This indicates that antireflux surgery is not a perfect solution for oxidative stress of the esophageal mucosa. Elevated oxidative stress in turn may partly explain why adenocarcinoma of the distal esophagus is found even after successful fundoplication. In GERD patients, proximal esophageal mucosal anti-oxidative defense seems to be defective before and even years after successful antireflux surgery. In addition, antireflux surgery apparently does not change the level of oxidative stress in the proximal esophagus, suggesting that defective mucosal anti-oxidative capacity plays a role in development of oxidative damage to the esophageal mucosa in GERD. In the malignant transformation of Barrett s esophagus an important component appears to be oxidative stress. DNA damage may be mediated by 8-OHdG, which we found to be increased in Barrett s epithelium and in high-grade dysplasia as well as in adenocarcinoma of the esophagus/GEJ compared with controls. The entire esophagus of Barrett s patients suffers from increased oxidative stress ( measured by 8-OhdG). PET is a useful tool in the staging and prognostication of adenocarcinoma of the esophagus/GEJ detecting organ metastases better than CT, although its accuracy in staging of paratumoral and distant lymph nodes is limited. Radical surgery for esophageal/GEJ carcinoma provides the greatest benefit in terms of survival, and its cost-utility appears to be the best of currently available treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cord blood is a well-established alternative to bone marrow and peripheral blood stem cell transplantation. To this day, over 400 000 unrelated donor cord blood units have been stored in cord blood banks worldwide. To enable successful cord blood transplantation, recent efforts have been focused on finding ways to increase the hematopoietic progenitor cell content of cord blood units. In this study, factors that may improve the selection and quality of cord blood collections for banking were identified. In 167 consecutive cord blood units collected from healthy full-term neonates and processed at a national cord blood bank, mean platelet volume (MPV) correlated with the numbers of cord blood unit hematopoietic progenitors (CD34+ cells and colony-forming units); this is a novel finding. Mean platelet volume can be thought to represent general hematopoietic activity, as newly formed platelets have been reported to be large. Stress during delivery is hypothesized to lead to the mobilization of hematopoietic progenitor cells through cytokine stimulation. Accordingly, low-normal umbilical arterial pH, thought to be associated with perinatal stress, correlated with high cord blood unit CD34+ cell and colony-forming unit numbers. The associations were closer in vaginal deliveries than in Cesarean sections. Vaginal delivery entails specific physiological changes, which may also affect the hematopoietic system. Thus, different factors may predict cord blood hematopoietic progenitor cell numbers in the two modes of delivery. Theoretical models were created to enable the use of platelet characteristics (mean platelet volume) and perinatal factors (umbilical arterial pH and placental weight) in the selection of cord blood collections with high hematopoietic progenitor cell counts. These observations could thus be implemented as a part of the evaluation of cord blood collections for banking. The quality of cord blood units has been the focus of several recent studies. However, hemostasis activation during cord blood collection is scarcely evaluated in cord blood banks. In this study, hemostasis activation was assessed with prothrombin activation fragment 1+2 (F1+2), a direct indicator of thrombin generation, and platelet factor 4 (PF4), indicating platelet activation. Altogether three sample series were collected during the set-up of the cord blood bank as well as after changes in personnel and collection equipment. The activation decreased from the first to the subsequent series, which were collected with the bank fully in operation and following international standards, and was at a level similar to that previously reported for healthy neonates. As hemostasis activation may have unwanted effects on cord blood cell contents, it should be minimized. The assessment of hemostasis activation could be implemented as a part of process control in cord blood banks. Culture assays provide information about the hematopoietic potential of the cord blood unit. In processed cord blood units prior to freezing, megakaryocytic colony growth was evaluated in semisolid cultures with a novel scoring system. Three investigators analyzed the colony assays, and the scores were highly concordant. With such scoring systems, the growth potential of various cord blood cell lineages can be assessed. In addition, erythroid cells were observed in liquid cultures of cryostored and thawed, unseparated cord blood units without exogenous erythropoietin. This was hypothesized to be due to the erythropoietic effect of thrombopoietin, endogenous erythropoietin production, and diverse cell-cell interactions in the culture. This observation underscores the complex interactions of cytokines and supporting cells in the heterogeneous cell population of the thawed cord blood unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.