Clustering Users of Online Content Service


Autoria(s): Linnanvuo, Sami
Contribuinte(s)

Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, tietojenkäsittelytieteen laitos

University of Helsinki, Faculty of Science, Department of Computer Science

Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap

Data(s)

04/09/2006

Resumo

Online content services can greatly benefit from personalisation features that enable delivery of content that is suited to each user's specific interests. This thesis presents a system that applies text analysis and user modeling techniques in an online news service for the purpose of personalisation and user interest analysis. The system creates a detailed thematic profile for each content item and observes user's actions towards content items to learn user's preferences. A handcrafted taxonomy of concepts, or ontology, is used in profile formation to extract relevant concepts from the text. User preference learning is automatic and there is no need for explicit preference settings or ratings from the user. Learned user profiles are segmented into interest groups using clustering techniques with the objective of providing a source of information for the service provider. Some theoretical background for chosen techniques is presented while the main focus is in finding practical solutions to some of the current information needs, which are not optimally served with traditional techniques.

Identificador

URN:NBN:fi-fe20061470

http://hdl.handle.net/10138/21432

Idioma(s)

en

Publicador

Helsingin yliopisto

University of Helsinki

Helsingfors universitet

Direitos

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Tipo

Pro gradu

Master's thesis

Pro gradu

Text