60 resultados para Boston Harbor (Mass.)--Maps
Resumo:
The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.
Composition operators, Aleksandrov measures and value distribution of analytic maps in the unit disc
Resumo:
A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.
Resumo:
Technological development of fast multi-sectional, helical computed tomography (CT) scanners has allowed computed tomography perfusion (CTp) and angiography (CTA) in evaluating acute ischemic stroke. This study focuses on new multidetector computed tomography techniques, namely whole-brain and first-pass CT perfusion plus CTA of carotid arteries. Whole-brain CTp data is acquired during slow infusion of contrast material to achieve constant contrast concentration in the cerebral vasculature. From these data quantitative maps are constructed of perfused cerebral blood volume (pCBV). The probability curve of cerebral infarction as a function of normalized pCBV was determined in patients with acute ischemic stroke. Normalized pCBV, expressed as a percentage of contralateral normal brain pCBV, was determined in the infarction core and in regions just inside and outside the boundary between infarcted and noninfarcted brain. Corresponding probabilities of infarction were 0.99, 0.96, and 0.11, R² was 0.73, and differences in perfusion between core and inner and outer bands were highly significant. Thus a probability of infarction curve can help predict the likelihood of infarction as a function of percentage normalized pCBV. First-pass CT perfusion is based on continuous cine imaging over a selected brain area during a bolus injection of contrast. During its first passage, contrast material compartmentalizes in the intravascular space, resulting in transient tissue enhancement. Functional maps such as cerebral blood flow (CBF), and volume (CBV), and mean transit time (MTT) are then constructed. We compared the effects of three different iodine concentrations (300, 350, or 400 mg/mL) on peak enhancement of normal brain tissue and artery and vein, stratified by region-of-interest (ROI) location, in 102 patients within 3 hours of stroke onset. A monotonic increasing peak opacification was evident at all ROI locations, suggesting that CTp evaluation of patients with acute stroke is best performed with the highest available concentration of contrast agent. In another study we investigated whether lesion volumes on CBV, CBF, and MTT maps within 3 hours of stroke onset predict final infarct volume, and whether all these parameters are needed for triage to intravenous recombinant tissue plasminogen activator (IV-rtPA). The effect of IV-rtPA on the affected brain by measuring salvaged tissue volume in patients receiving IV-rtPA and in controls was investigated also. CBV lesion volume did not necessarily represent dead tissue. MTT lesion volume alone can serve to identify the upper size limit of the abnormally perfused brain, and those with IV-rtPA salvaged more brain than did controls. Carotid CTA was compared with carotid DSA in grading of stenosis in patients with stroke symptoms. In CTA, the grade of stenosis was determined by means of axial source and maximum intensity projection (MIP) images as well as a semiautomatic vessel analysis. CTA provides an adequate, less invasive alternative to conventional DSA, although tending to underestimate clinically relevant grades of stenosis.
Resumo:
Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.
Resumo:
The struggle over globalization has arguably been the most important debate in world politics of the 2000 s. This study maps the origins of this debate, its most important actors and its results so far. The focus is on the Global Justice Movement which launched the globalization debate to the mass media spotlight. Particular attention is given to the World Social Forum, the movement s global gathering, analyzed as a new form of global publics. The mediation of the debates initiated by these publics to the Finnish national context is analyzed at two levels: First, through forums for policy debate such as the Helsinki Process on Globalization and Democracy and second, through the public debate in the Finnish mass media. The study proves many common assumptions about the Global Justice Movement wrong. Rather than being a marginal actor, the movement is the initiator of the whole debate. Combining expert knowledge to carnevalistic demonstrations rarely seen in Finland, the movement gains more public attention and more members in Finland than in many other European countries. The political and economic elites are not just adversaries of the movement. Rather, the Finnish elite is divided in two. Some top politicians starting from the president and the minister for foreign affairs adopt many of the movement s claims. Later, the business elite, with support from the nation s largest newspaper, begins a counterattack to challenge the movement and its allies. The return of politics staged by the movement is, first and foremost, a phenomenon in the public sphere. Two downward trends, the decline of party politics and the traditionally strong Finnish field of politically oriented civic associations remain unchanged. This allows for the conclusion that we are witnessing a move from organizational politics towards politics in the public sphere. The study develops a theoretical perspective on social movements as actors in the public sphere. It argues that movements have, in fact, played an important role in the very development of the democratic public sphere as we know it. In the light of this observation, the study assesses the potentials and the pitfalls of social movements and their related publics to global democracy. Methodologically, the most important contribution is the development of Public Justifications Analysis, a method for analyzing political claims in media debates and the ways in which these claims are justified.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66M_{ee}
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
Resumo:
We present measurements of the top quark mass using the \mT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied to t\tbar dilepton events produced in p\pbar collisions at Fermilab's Tevatron and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4 \invfb, we select 236 t\tbar candidate events. Using the \mT2 distribution, we measure the top quark mass to be M_{Top} = 168.0^{+4.8}_{-4.0} $\pm$ {2.9} GeV/c^{2}. By combining the \mT2 with the reconstructed top mass distributions based on a neutrino weighting method, we measure M_{top}=169.3 $\pm$ 2.7 $\pm$ 3.2 GeV/c^{2}. This is the first application of the \mT2 variable in a mass measurement at a hadron collider.