23 resultados para Biological Invasions
Resumo:
The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.
Resumo:
This study addressed the large-scale molecular zoogeography in two brackish water bivalve molluscs, Macoma balthica and Cerastoderma glaucum, and genetic signatures of the postglacial colonization of Northern Europe by them. The traditional view poses that M. balthica in the Baltic, White and Barents seas (i.e. marginal seas) represent direct postglacial descendants of the adjacent Northeast Atlantic populations, but this has recently been challenged by observations of close genetic affinities between these marginal populations and those of the Northeast Pacific. The primary aim of the thesis was to verify, quantify and characterize the Pacific genetic contribution across North European populations of M. balthica and to resolve the phylogeographic histories of the two bivalve taxa in range-wide studies using information from mitochondrial DNA (mtDNA) and nuclear allozyme polymorphisms. The presence of recent Pacific genetic influence in M. balthica of the Baltic, White and Barents seas, along with an Atlantic element, was confirmed by mtDNA sequence data. On a broader temporal and geographical scale, altogether four independent trans-Arctic invasions of Macoma from the Pacific since the Miocene seem to have been involved in generating the current North Atlantic lineage diversity. The latest trans-Arctic invasion that affected the current Baltic, White and Barents Sea populations probably took place in the early post-glacial. The nuclear genetic compositions of these marginal sea populations are intermediate between those of pure Pacific and Atlantic subspecies. In the marginal sea populations of mixed ancestry (Barents, White and Northern Baltic seas), the Pacific and Atlantic components are now randomly associated in the genomes of individual clams, which indicates both pervasive historical interbreeding between the previously long-isolated lineages (subspecies), and current isolation of these populations from the adjacent pure Atlantic populations. These mixed populations can be characterized as self-supporting hybrid swarms, and they arguably represent the most extensive marine animal hybrid swarms so far documented. Each of the three swarms still has a distinct genetic composition, and the relative Pacific contributions vary from 30 to 90 % in local populations. This diversity highlights the potential of introgressive hybridization to rapidly give rise to new evolutionarily and ecologically significant units in the marine realm. In the south of the Danish straits and in the Southern Baltic Sea, a broad genetic transition zone links the pure North Sea subspecies M. balthica rubra to the inner Baltic hybrid swarm, which has about 60 % of Pacific contribution in its genome. This transition zone has no regular smooth clinal structure, but its populations show strong genotypic disequilibria typical of a hybrid zone maintained by the interplay of selection and gene flow by dispersing pelagic larvae. The structure of the genetic transition is partly in line with features of Baltic water circulation and salinity stratification, with greater penetration of Atlantic genes on the Baltic south coast and in deeper water populations. In all, the scenarios of historical isolation and secondary contact that arise from the phylogeographic studies of both Macoma and Cerastoderma shed light to the more general but enigmatic patterns seen in marine phylogeography, where deep genetic breaks are often seen in species with high dispersal potential.
Resumo:
Rheumatoid arthritis (RA) and other chronic inflammatory joint diseases already begin to affect patients health-related quality of life (HRQoL) in the earliest phases of these diseases. In treatment of inflammatory joint diseases, the last two decades have seen new strategies and treatment options introduced. Treatment is started at an earlier phase; combinations of disease-modifying anti-rheumatic drugs (DMARDs) and corticosteroids are used; and in refractory cases new drugs such as tumour necrosis factor (TNF) inhibitors or other biologicals can be started. In patients with new referrals to the Department of Rheumatology of the Helsinki University Central Hospital, we evaluated the 15D and the Stanford Health Assessment Questionnaire (HAQ) results at baseline and approximately 8 months after their first visit. Altogether the analysis included 295 patients with various rheumatic diseases. The mean baseline 15D score (0.822, SD 0.114) was significantly lower than for the age-matched general population (0.903, SD 0.098). Patients with osteoarthritis (OA) and spondyloarthropathies (SPA) reported the poorest HRQoL. In patients with RA and reactive arthritis (ReA) the HRQoL improved in a statistically significant manner during the 8-month follow-up. In addition, a clinically important change appeared in patients with systemic rheumatic diseases. HAQ score improved significantly in patients with RA, arthralgia and fibromyalgia, and ReA. In a study of 97 RA patients treated either with etanercept or adalimumab, we assessed their HRQoL with the RAND 36-Item Health Survey 1.0 (RAND-36) questionnaire. We also analysed changes in clinical parameters and the HAQ. With etanercept and adalimumab, the values of all domains in the RAND-36 questionnaire increased during the first 3 months. The efficacy of each in improving HRQoL was statistically significant, and the drug effects were comparable. Compared to Finnish age- and sex-matched general population values, the HRQoL of the RA patients was significantly lower at baseline and, despite the improvement, remained lower also at follow-up. Our RA patients had long-standing and severe disease that can explain the low HRQoL also at follow-up. In a pharmacoeconomic study of patients treated with infliximab we evaluated medical and work disability costs for patients with chronic inflammatory joint disease during one year before and one year after institution of infliximab treatment. Clinical and economic data for 96 patients with different arthritis diagnoses showed, in all patients, significantly improved clinical and laboratory variables. However, the medical costs increased significantly during the second period by 12 015 (95% confidence interval, 6 496 to 18 076). Only a minimal decrease in work disability costs occurred mean decrease 130 (-1 268 to 1 072). In a study involving a switch from infliximab to etanercept, we investigated the clinical outcome in 49 patients with RA. Reasons for switching were in 42% failure to respond by American College of Rheumatology (ACR) 50% criteria; in 12% adverse event; and in 46% non-medical reasons although the patients had responded to infliximab. The Disease Activity Score with 28 joints examined (DAS28) allowed us to measure patients disease activity and compare outcome between groups based on the reason for switching. In the patients in whom infliximab was switched to etanercept for nonmedical reasons, etanercept continued to suppress disease activity effectively, and 1-year drug survival for etanercept was 77% (95% CI, 62 to 97). In patients in the infliximab failure and adverse event groups, DAS28 values improved significantly during etanercept therapy. However, the 1-year drug survival of etanercept was only 43% (95% CI, 26 to 70) and 50% (95% CI, 33 to 100), respectively. Although the HRQoL of patients with inflammatory joint diseases is significantly lower than that of the general population, use of early and aggressive treatment strategies including TNF-inhibitors can improve patients HRQoL effectively. Further research is needed in finding new treatment strategies for those patients who fail to respond or lose their response to TNF-inhibitors.
Resumo:
Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.
Resumo:
Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.
Resumo:
Ecology and evolutionary biology is the study of life on this planet. One of the many methods applied to answering the great diversity of questions regarding the lives and characteristics of individual organisms, is the utilization of mathematical models. Such models are used in a wide variety of ways. Some help us to reason, functioning as aids to, or substitutes for, our own fallible logic, thus making argumentation and thinking clearer. Models which help our reasoning can lead to conceptual clarification; by expressing ideas in algebraic terms, the relationship between different concepts become clearer. Other mathematical models are used to better understand yet more complicated models, or to develop mathematical tools for their analysis. Though helping us to reason and being used as tools in the craftmanship of science, many models do not tell us much about the real biological phenomena we are, at least initially, interested in. The main reason for this is that any mathematical model is a simplification of the real world, reducing the complexity and variety of interactions and idiosynchracies of individual organisms. What such models can tell us, however, both is and has been very valuable throughout the history of ecology and evolution. Minimally, a model simplifying the complex world can tell us that in principle, the patterns produced in a model could also be produced in the real world. We can never know how different a simplified mathematical representation is from the real world, but the similarity models do strive for, gives us confidence that their results could apply. This thesis deals with a variety of different models, used for different purposes. One model deals with how one can measure and analyse invasions; the expanding phase of invasive species. Earlier analyses claims to have shown that such invasions can be a regulated phenomena, that higher invasion speeds at a given point in time will lead to a reduction in speed. Two simple mathematical models show that analysis on this particular measure of invasion speed need not be evidence of regulation. In the context of dispersal evolution, two models acting as proof-of-principle are presented. Parent-offspring conflict emerges when there are different evolutionary optima for adaptive behavior for parents and offspring. We show that the evolution of dispersal distances can entail such a conflict, and that under parental control of dispersal (as, for example, in higher plants) wider dispersal kernels are optimal. We also show that dispersal homeostasis can be optimal; in a setting where dispersal decisions (to leave or stay in a natal patch) are made, strategies that divide their seeds or eggs into fractions that disperse or not, as opposed to randomized for each seed, can prevail. We also present a model of the evolution of bet-hedging strategies; evolutionary adaptations that occur despite their fitness, on average, being lower than a competing strategy. Such strategies can win in the long run because they have a reduced variance in fitness coupled with a reduction in mean fitness, and fitness is of a multiplicative nature across generations, and therefore sensitive to variability. This model is used for conceptual clarification; by developing a population genetical model with uncertain fitness and expressing genotypic variance in fitness as a product between individual level variance and correlations between individuals of a genotype. We arrive at expressions that intuitively reflect two of the main categorizations of bet-hedging strategies; conservative vs diversifying and within- vs between-generation bet hedging. In addition, this model shows that these divisions in fact are false dichotomies.
Resumo:
Yhteenveto: Acinetobacter sp. metsäteollisuuden jätevesien biologisessa fosforinpoistossa