20 resultados para BMP-2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent transforming growth factor-beta (TGF-beta) binding proteins (LTBPs) -1, -3 and -4 are ECM components whose major function is to augment the secretion and matrix targeting of TGF-beta, a multipotent cytokine. LTBP-2 does not bind small latent TGF-beta but has suggested functions as a structural protein in ECM microfibrils. In the current work we focused on analyzing possible adhesive functions of LTBP-2 as well as on characterizing the kinetics and regulation of LTBP-2 secretion and ECM deposition. We also explored the role of TGF-beta binding LTBPs in endothelial cells activated to mimic angiogenesis as well as in malignant mesothelioma. We found that, unlike most adherent cells, several melanoma cell lines efficiently adhered to purified recombinant LTBP-2. Further characterization revealed that the adhesion was mediated by alpha3beta1 and alpha6beta1 integrins. Heparin also inhibited the melanoma cell adhesion suggesting a role for heparan sulphate proteoglycans. LTBP-2 was also identified as a haptotactic substrate for melanoma cell migration. We used cultured human embryonic lung fibroblasts to analyze the temporal and spatial association of LTBP-2 into ECM. By We found that LTBP-2 was efficiently assembled to the ECM only in confluent cultures following the deposition of fibronectin (FN) and fibrillin-1. In early, subconfluent cultures it remained primarily in soluble form after secretion. LTBP-2 colocalized transiently with FN and fibrillin-1. Silencing of fibrillin-1 expression by lentiviral shRNAs profoundly disrupted the deposition of LTBP-2 indicating that the ECM association of LTBP-2 depends on a pre-formed fibrillin-1 network. Considering the established role of TGF-beta as a regulator of angiogenesis we induced morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) and followed the fate of LTBP-1 in the endothelial ECM. This resulted in profound proteolytic processing of LTBP-1 and release of latent TGF-beta complexes from the ECM. The processing was coupled with increased activation of MT-MMPs and specific upregulation of MT1-MMP. The major role of MT1-MMP in the proteolysis of LTBP-1 was confirmed by suppressing the expression with lentivirally induced short-hairpin RNAs as well as by various metalloproteinases inhibitors. TGF-beta can promote tumorigenesis of malignant mesothelioma (MM), which is an aggressive tumor of the pleura with poor prognosis. TGF-beta activity was analyzed in a panel of MM tumors by immunohistochemical staining of phosphorylated Smad-2 (P-Smad2). The tumor cells were strongly positive for P-Smad2 whereas LTBP-1 immunoreactivity was abundant in the stroma, and there was a negative correlation between LTBP-1 and P-Smad2 staining. In addition, the high P-Smad2 immunoreactivity correlated with shorter survival of patients. mRNA analysis revealed that TGF-beta1 was the most highly expressed isoform in both normal human pleura and MM tissue. LTBP-1 and LTBP-3 were both abundantly expressed. LTBP-1 was the predominant isoform in established MM cell lines whereas the expression of LTBP-3 was high in control cells. Suppression of LTBP-3 expression by siRNAs resulted in increased TGF-beta activity in MM cell lines accompanied by decreased proliferation. Our results suggest that decreased expression of LTBP-3 in MM could alter the targeting of TGF-beta to the ECM and lead to its increased activation. The current work emphasizes the coordinated process of the assembly and appropriate targeting of LTBPs with distinct adhesive or cytokine harboring properties into the ECM. The hierarchical assembly may have implications in the modulation of signaling events during morphogenesis and tissue remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant mesothelioma (MM) is a rare, usually incurable, disease mainly caused by former exposure to asbestos. Even though MM has a strong etiological link, genetic factors may play a role, since not all cases can be linked to former asbestos exposure. This thesis focuses on lung diseases, mainly malignant mesothelioma (MM), and idiopathic pulmonary fibrosis (IPF), which resembles asbestosis. The specific asbestos-related pathways associated with malignant as well as non-malignant lung diseases, still need to be clarified. Since most patients diagnosed with MM or asbestosis/fibrosis have a dismal prognosis and few therapeutic options are available, early diagnosis and better understanding of the disease pathogenesis are of the utmost importance. The first objective of this thesis was to identify asbestos specific differentially expressed genes. This was approached by using high-resolution gene expression arrays, and three different human lung cell lines, as well as with three different bioinformatics approaches. Since the first study aimed to elucidate potential early changes, the second study was used to screen DNA copy number changes in MM tumour samples. This was performed using genome wide microarrays for identification of DNA copy number changes characterstic for MM. Study III focused on the role of gremlin in the regulation of bone morphogenetic protein (BMPs) in IPF. Further studies were conducted in asbestos-exposed cell cultures as well as in an asbestos-induced mouse model. Furthermore, GATA-6 was studied in MM and metastatic pleural adenocarcinoma. The GATA transcription factors are important during embryonic development, but their role in cancer is still unclear. GATA-6 is a co-factor/target of thyroid transcription factor 1 (TTF-1), which is used in differential diagnostics of pleural MM and adenocarcinoma. Bioinformatics probed the genes and biological processes ordered in terms of significance, clusters, and highly enriched chromosomal regions. The study revealed several already identified targets, produced new ideas about genes which are central for asbestos exposure, as well as provided supplementary data for researchers to check their own novel findings or ideas. The analysis revealed DNA copy number changes characteristic for MM tumors. The most common regions of loss were detected in 1p, 3p, 6q, 9p, 13, 14, and 22, and gains at 17q. The histological features in asbestosis and IPF are very similar, wherefore IPF can be studied in asbestos models. The BMP antagonist gremlin was up-regulated by asbestos exposure in human epithelial cell lines, which was also observed in Study I. The transforming growth factor (TGF) -β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. BMP-7 signaling was down-regulated in response to up-regulation of gremlin, and restoration of BMP-7 signaling prevented progression of fibrosis in mice. Therefore, the study suggests that the restoration of BMP-7 signaling in fibrotic lung could potentially aid in the treatment of IPF patients. Study IV revealed that GATA-6 was strongly expressed in the majority of the MM cases, and correlated statistically significant with longer survival in subgroups of MM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamines are organic polycations that participate in various physiological functions, including cell proliferation, differentiation and apoptosis. Cellular polyamines originate from endogenous biosynthesis and exogenous sources. Their subcellular pool is under strict control, achieved by regulating their uptake and metabolism. Polyamine-induced proteins called antizymes (AZ) act as key regulators of intracellular polyamine concentration. They regulate both the transport of polyamines and the activity and degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. AZs themselves are negatively regulated by antizyme inhibitor (AZIN). AZIN functions as a positive regulator of cellular polyamine homeostasis, which by binding to AZs reactivates ODC and induces the uptake of polyamines. In various pathological conditions, including cancer, polyamine levels are misregulated. Polyamine homeostasis has therefore become an attractive target for therapeutic interventions and it is thus crucial to characterize the molecular basis underlying the homeostatic regulation. A novel human AZIN-resembling protein was previously identified in our group. The purpose of this study was to elucidate the function and distribution of this protein, termed as an antizyme inhibitor 2 (AZIN2). According to my results, AZIN2 functions as a novel regulator of polyamine homeostasis. It shows no enzymatic activity, but instead it binds AZs and negates their activity, which subsequently leads to reactivation of ODC and inhibition of its degradation. Expression of AZIN2 is restricted to terminally differentiated cells, such as mast cells (MC) and neurosecretory cells. In these actively secreting cell types, AZIN2 localizes to subcellular vesicles or granules where its function is important for the vesicle-mediated secretion. In MCs, AZIN2 localizes to the serotonin-containing subset of MC granules, and its expression is coupled to MC activation. The functional role of polyamines as potential mediators of MC activity was also investigated, and it was observed that the secretion of serotonin is selectively dependent on activation of ODC. In neurosecretory cells, AZIN2-positive vesicles localize mainly to the trans-Golgi network (TGN). Depletion of AZIN2 or cellular polyamines causes selective fragmentation of the TGN and retards secretion of proteins. Since addition of exogenous polyamines reverses these effects, the data indicate that AZIN2 and its downstream effectors, polyamines, are functionally implicated in the regulation of secretory vesicle transport. My studies therefore reveal a novel function for polyamines as modulators of both constitutive and regulated secretion. Based on the results, I propose that the role of AZIN2 is to act as a local in situ activator of polyamine biosynthesis.