19 resultados para Archaeological Site
Resumo:
The nature of a burial is always ritualistic. This is often forgotten when dealing with Finnish inhumation burials containing animal bones. Only the animal bones found close to the deceased have traditionally been thought to have a ritualistic purpose. The animal bones found in the filling of the grave, which is still part of the burial, has on the other hand, often been neglected in the previous research. In this Master s thesis I will discuss the function and interpretation of animal bones in graves. The base of this study is six sites, all of different nature, from Finland. Luistari in Eura is from the western coast and is dated to Late Iron Age (and possibly Medieval period), the Medieval hamlet of Finno is situated in Espoo which is situated on the southern coast. Two town burials, Turku and Porvoo, are also included in this study. The graves from Turku are dated to Late Medieval period and Early Renaissance, whereas the cemetery in Porvoo is from the 18th century. Visulahti in Mikkeli is from the Late Iron Age and represents Eastern Finnish burial tradition, the same as Suotniemi from Käkisalmi parish, which is nowadays part of Russia. While parts of the animal bones had already been analysed before, the author also analysed animal bones for the purpose of the present Master´s thesis. The bones were compared to the burial contexts, when possible. Based on the comparisons I have made interpretations which might explain the existence of animal bones in the graves. The interpretations are among others sacrifice, commemoration meals and animal burials. The site could also have been a settlement site prior to the graves, thus the bones in the graves would belong to the settlement phase. When comparing the date of the studied sites, the town burials are later and the animal bones are probably related to previous or contemporary use of the sites as graveyards. On top of this there does not seem to be much difference in burial tradition between Eastern and Western Finland, although at least from the hamlet burials of Finno there are aspects that could be linked to Eastern burials. In making the interpretations I have taken into consideration the aspects of belief during different time periods when they could be accounted as relevant. Also the problems with bone preservation were relevant and challenging for the study. Often only the hardest substance of the skeleton, namely teeth, has been preserved. For this reason the quality of the archaeological documentation was a key issue in this study. In producing quality interpretations of the animal bones in graves, the bones, contexts and their relationship to the surrounding site should be documented with care.
Resumo:
The relationship between site characteristics and understorey vegetation composition was analysed with quantitative methods, especially from the viewpoint of site quality estimation. Theoretical models were applied to an empirical data set collected from the upland forests of southern Finland comprising 104 sites dominated by Scots pine (Pinus sylvestris L.), and 165 sites dominated by Norway spruce (Picea abies (L.) Karsten). Site index H100 was used as an independent measure of site quality. A new model for the estimation of site quality at sites with a known understorey vegetation composition was introduced. It is based on the application of Bayes' theorem to the density function of site quality within the study area combined with the species-specific presence-absence response curves. The resulting posterior probability density function may be used for calculating an estimate for the site variable. Using this method, a jackknife estimate of site index H100 was calculated separately for pine- and spruce-dominated sites. The results indicated that the cross-validation root mean squared error (RMSEcv) of the estimates improved from 2.98 m down to 2.34 m relative to the "null" model (standard deviation of the sample distribution) in pine-dominated forests. In spruce-dominated forests RMSEcv decreased from 3.94 m down to 3.16 m. In order to assess these results, four other estimation methods based on understorey vegetation composition were applied to the same data set. The results showed that none of the methods was clearly superior to the others. In pine-dominated forests, RMSEcv varied between 2.34 and 2.47 m, and the corresponding range for spruce-dominated forests was from 3.13 to 3.57 m.
Resumo:
Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).