300 resultados para Aristote (0384-0322 av. J.-C.) -- Ouvrages avant 1800


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) are secreted proteins which promote the survival of neurons, formation and maintenance of neuronal contacts and regulate synaptic plasticity. NTFs are also potential drug candidates for the treatment of neurodegenerative diseases. Parkinson’s disease (PD) is mainly caused by the degeneration of midbrain dopaminergic neurons. Current therapies for PD do not stop the neurodegeneration or repair the affected neurons. Thus, search of novel neurotrophic factors for midbrain dopaminergic neurons, which could also be used as therapeutic proteins, is highly warranted. In the present study, we identified and characterized a novel protein named conserved dopamine neurotrophic factor (CDNF), a homologous protein to mesencephalic astrocyte-derived neurotrophic factor (MANF). Others have shown that MANF supports the survival of embryonic midbrain dopaminergic neurons in vitro, and protects cultured cells against endoplasmic reticulum (ER) stress. CDNF and MANF form a novel evolutionary conserved protein family with characteristic eight conserved cysteine residues in their primary structure. The vertebrates have CDNF and MANF encoding genes, whereas the invertebrates, including Drosophila and Caenorhabditis have a single homologous CDNF/MANF gene. In this study we show that CDNF and MANF are secreted proteins. They are widely expressed in the mammalian brain, including the midbrain and striatum, and in several non-neuronal tissues. We expressed and purified recombinant human CDNF and MANF proteins, and tested the neurotrophic activity of CDNF on midbrain dopaminergic neurons using a 6-hydroxydopamine (6-OHDA) rat model of PD. In this model, a single intrastriatal injection of CDNF protected midbrain dopaminergic neurons and striatal dopaminergic fibers from the 6-OHDA toxicity. Importantly, an intrastriatal injection of CDNF also restored the functional activity of the nigrostriatal dopaminergic system when given after the striatal 6-OHDA lesion. Thus, our study shows that CDNF is a potential novel therapeutic protein for the treatment of PD. In order to elucidate the molecular mechanisms of CDNF and MANF activity, we resolved their crystal structure. CDNF and MANF proteins have two domains; an amino (N)-terminal saposin-like domain and a presumably unfolded carboxy (C)-terminal domain. The saposin-like domain, which is formed by five α-helices and stabilized by three intradomain disulphide bridges, may bind to lipids or membranes. The C-terminal domain contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus facilitate protein folding in the ER. Our studies suggest that CDNF and MANF are novel potential therapeutic proteins for the treatment of neurodegenerative diseases. Future studies will reveal the neurotrophic and cytoprotective mechanisms of CDNF and MANF in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actin cytoskeleton is required, in all eukaryotic organisms, for several key cellular functions such as cell motility, cytokinesis, and endocytosis. In cells, actin exists either in a monomeric state (G-actin) or in a filamentous form (F-actin). F-actin is the functional form, which can assemble into various structures and produce direct pushing forces that are required for different motile processes. The assembly of actin monomers into complicated three-dimensional structures is tightly regulated by a large number of actin regulating proteins. One central actin regulating protein is twinfilin. Twinfilin consists of two actin depolymerizing-factor homology (ADF-H) domains, which are capable of binding actin, and is conserved from yeast to mammals. Previously it has been shown that twinfilin binds to and sequesters G-actin, and interacts with the heterodimeric capping protein. More recently it has been found that twinfilin also binds to the fast growing actin filament ends and prevents their growth. However, the cellular role of twinfilin and the molecular mechanisms of these interactions have remained unclear. In this study we characterized the molecular mechanisms behind the functions of twinfilin. We demonstrated that twinfilin forms a high-affinity complex with ADP-bound actin monomers (ADP-G-actin). Both ADF-H domains are capable of binding G-actin, but the C-terminal domain contains the high-affinity binding site. Our biochemical analyses identified twinfilin s C-terminal tail region as the interaction site for capping protein. Contrary to G-actin binding, both ADF-H domains of twinfilin are required for the actin filament barbed end capping activity. The C-terminal domain is structurally homologous to ADF/cofilin and binds to filament sides in a similar manner, providing the main affinity for F-actin during barbed end capping. The structure of the N-terminal domain is more distant from ADF/cofilin, and thus it can only associate with G-actin or the terminal actin monomer at the filament barbed end, where it regulates twinfilin s affinity for barbed ends. These data suggest that the mechanism of barbed end capping is similar for twinfilin and gelsolin family proteins. Taken together, these studies revealed how twinfilin interacts with G-actin, filament barbed ends, and capping protein, and also provide a model for how these activities evolved through a duplication of an ancient ADF/cofilin-like domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather perma-nent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncer-tain especially in the changing climate. -- The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake se-diments, and carbon gas (CO2 and CH4) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60oN to 69oN. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention as a regulator of the TOC concentrations dominated in southern Finland, whereas the peatland sources were important in northern Finland. The homogeneous land use in the north and the restricted catchment sources of TOC contribute to the close relationship between peatlands and the TOC concentrations in the northern lakes. In southern Finland the more favorable climate for degradation and the multiple sources of TOC in the mixed land use highlight the importance of retention. Carbon processing was intensive in the small lakes. Both CO2 emission and the Holocene C pool in sediments per square meter of the lake area were highest in the smallest lakes. How-ever, because the total area of the small lakes on the areal level is limited, the large lakes are important units in C processing in the landscape. Both CO2 and CH4 concentrations and emissions were high in eutrophic lakes. High availability of nutrients and the fresh organic matter enhance degradation in these lakes. Eutrophic lakes are often small and shallow, enabling high contact between the water column and the sediment. At the landscape level, the lakes in agricultural areas are often eutrophic due to fertile soils and fertilization of the catchments, and therefore they also showed the highest CO2 and CH4 concentrations. Export from the catchments and in-lake degradation were suggested to be equally important sources of CO2 and CH4 in fall when the lake water column was intensively mixed and the transport of sub-stances from the catchment was high due to the rainy season. In the stagnant periods, especially in the winter, in-lake degradation as a gas source was highlighted due to minimal mixing and limited transport of C from the catchment. The strong relationship between the annual CO2 level of lakes and the annual precipitation suggests that climate change can have a major impact on C cycling in the catchments. Increase in precipitation enhances DOC export from the catchments and leads to increasing greenhouse gas emissions from lakes. The total annual CO2 emission from Finnish lakes was estimated to be 1400 Gg C a-1. The total lake sediment C pool in Finland was estimated to be 0.62 Pg, giving an annual sink in Finnish lakes of 65 Gg C a-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis project is to study changes in the physical state of cell membranes during cell entry, including how these changes are connected to the presence of ceramide. The role of enzymatical manipulation of lipids in bacterial internalization is also studied. A novel technique, where a single giant vesicle is chosen under the microscope and an enzyme coupled-particle attached to the micromanipulator pipette towards the vesicle, is used. Thus, the enzymatic reaction on the membrane of the giant vesicle can be followed in real-time. The first aim of this study is to develop a system where the localized sphingomyelinase membrane interaction could be observed on the surface of the giant vesicle and the effects could be monitored with microscopy. Domain formation, which resembles acid sphingomyelinase (ASMase), causes CD95 clustering in the cell membrane due to ceramide production (Grassmé et al., 2001a; Grassmé et al., 2001b) and the formation of small vesicles inside the manipulated giant vesicle is observed. Sphingomyelinase activation has also been found to be an important factor in the bacterial and viral invasion process in nonphagocytic cells (Grassmé et al., 1997; Jan et al., 2000). Accordingly, sphingomyelinase reactions in the cell membrane might also give insight into bacterial or viral cellular entry events. We found sphingomyelinase activity in Chlamydia pneumonia elementarybodies (EBs). Interestingly, the bacterium enters host cells by endocytosis but the internalization mechanism of Chlamydia is unknown. The hypothesis is that sphingomyelin is needed for host cell entry in the infection of C. pneumonia. The second project focuses on this subject. The goal of the third project is to study a role of phosphatidylserine as a target for a membrane binding protein. Phosphatidylserine is chosen because of its importance in fusion processes. This will be another example for the importance of lipids in cell targeting, internalization, and externalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predation is an important source of mortality for most aquatic animals. Thus, the ability to avoid being eaten brings substantial fitness benefits to individuals. Predator detection abilities and antipredator behaviour were examined in various planktivores, i.e. the littoral mysids Neomysis integer and Praunus flexuosus, three-spined stickleback Gasterosteus aculeatus larvae, pelagic mysids Mysis mixta and M. relicta, and the predatory cladoceran Cercopagis pengoi, with cues from their respective predators European perch Perca fluviatilis and Baltic herring Clupea harengus membras. The use of different aquatic macrophytes as predation refuges by the littoral planktivores was also examined. All pelagic planktivores and stickleback larvae were able to detect the presence of their predator by chemical cues alone. The littoral mysids N. integer and P. flexuosus responded only when chemical and visual predator cues were combined. The responses of stickleback larvae were stronger to the combined cues than the chemical cue alone. A common antipredator behaviour in all of the planktivores studied was decreased ingestion rate in response to predator cues. N. integer and stickleback larvae also decreased their swimming activity. Pelagic mysids and C. pengoi altered their prey selectivity patterns in response to predator cues. The effects of predator cues on the swarming behaviour of N. integer were examined. Swarming brings clear antipredator advantages to N. integer, since when they feed in a swarm, they do not significantly decrease their feeding rate. However, the swarming behaviour of N. integer was not affected by predation risk, but was instead a fixed strategy. Despite the presence or absence of predator cues, N. integer individuals attempted to associate with a swarm and preferred larger to smaller swarms. In studies with aquatic macrophytes, stickleback larvae and P. flexuosus utilized vegetation as a predation refuge, spending more time within vegetation when under predation threat. The two macroalgal species studied, bladderwrack Fucus vesiculosus and stonewort Chara tomentosa, were preferred by P. flexuosus, whereas Eurasian watermilfoil Myriophyllum spicatum was strongly avoided by N. integer and stickleback larvae. In fact, when in dense patches in aquaria, M. spicatum caused acute and high mortality (> 70%) in littoral mysids, but not in sticklebacks, whereas C. tomentosa and northern watermilfoil M. sibiricum did not. In contrast, only 2-4% mortality in N. integer was observed with intact and broken stems of M. spicatum in field experiments. The distribution of littoral mysids in different vegetations, however, suggests that N. integer avoids areas vegetated by M. spicatum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four GDNF ligands (GDNF, neurturin, artemin and persephin), and mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) protect midbrain dopaminergic neurons that degenerate in Parkinson's disease. Each GDNF ligand binds a specific coreceptor GDNF family receptor α (GFRα), leading to the formation of a heterotetramer complex, which then interacts with receptor tyrosine kinase RET, the signalling receptor. The present thesis describes the structural and biochemical characterization of the GDNF2-GFRα12 complex and the MANF and CDNF proteins. Previous and current mutation data and comparison between GDNF-GFRα1 and artemin-GFRα3 binding interfaces show that N162GFRα1, I175GFRα1, V230GFRα1, Y120GDNF and L114GDNF are the specificity determinants among different ligand-coreceptor pairs. The structure suggests that sucrose octasulphate, a heparin mimic, interacts with a region R190-K202 within domain 2 of GFRα1. Mutating these residues on the GFRα1 surface, which are not in the GDNF binding region, affected RET phosphorylation, which provides a putative RET binding region in domain 2 and 3 of GFRα1. The structural comparison of the GDNF-GFRα1 and artemin-GFRα3 complexes shows a difference in bend angle between the ligand monomers. This variation in bend angle of the ligand may affect the kinetics of RET phosphorylation. To confirm that the difference is not due to crystallization artefacts, I crystallized the GDNF-GFRα1 complex without SOS in different cell dimensions. The structure of the second GDNF-GFRα1 complex is very similar to the previous one, suggesting that the difference between the artemin-GFRα3 and GDNF-GFRα1 complexes are intrinsic, not due to crystal packing. Finally, MANF and CDNF are bifunctional proteins with extracellular neurotrophic activity and ER resident cytoprotective role. The crystal structures of MANF and CDNF are presented here. Intriguingly, the structures of both the neurotrophic factors do not show structural similarity to any of previously known growth factor superfamilies; instead they are similar to saposins, the lipid-binding proteins. The N-terminal domain of MANF and CDNF contain conserved lysines and arginines on its surface, which may interact with negatively charged head groups of phospholipids, as saposins do. Thus MANF and CDNF may provide neurotrophic activities by interacting with a lipo-receptor. The structure of MANF shows a CXXC motif forming internal disulphide bridge in the natively unfolded C-terminus. This motif is common to reductases and disulphide isomerases. It is thus tempting to speculate that the CXXC motif of MANF and CDNF may be involved in oxidative protein folding, which may explain its cytoprotective role in the ER.