35 resultados para root-nodule bacteria
Resumo:
The bacterial genus Stenotrophomonas comprises 12 species. They are widely found throughout the environment and particularly S. maltophilia, S. rhizophila and S. pavanii are closely associated with plants. Strains of the most common Stenotrophomonas species, S. maltophilia, promote plant growth and health, degrade natural and man-made pollutants and produce biomolecules of biotechnological and economical value. Many S. maltophilia –strains are also multidrug resistant and can act as opportunistic human pathogens. During an INCO-project (1998-2002) rhizobia were collected from root nodules of the tropical leguminous tree Calliandra calothyrsus Meisn. from several countries in Central America, Africa and New Caledonia. The strains were identified by the N2-group (Helsinki university) and some strains turned out to be members of the genus Stenotrophomonas. Several Stenotrophomonas strains induced white tumor- or nodule-like structures on Calliandra?s roots in plant experiments. The strains could, besides from root nodules, also be isolated from surface sterilized roots and stems. The purpose of my work was to investigate if the Stenotrophomonas strains i) belong to a new Stenotrophomonas species, ii) have the same origin, iii) if there are other differences than colony morphology between phase variations of the same strain, iv) have plant growth-promoting (PGP) activity or other advantageous effects on plants, and v) like rhizobia have ability to induce root nodule formation. The genetic diversity and clustering of the Stenotrophomonas strains were analyzed with AFLP fingerprinting to get indications about their geographical origin. Differences in enzymatic properties and ability to use different carbon and energy sources were tested between the two phases of each strain with commercial API tests for bacterial identification. The ability to infect root hairs and induce root nodule formation was investigated both using plant tests with the host plant Calliandra and PCR amplification of nodA and nodC genes for nodulation. The PGP activity of the strains was tested in vitro mainly with plate methods. The impact on growth, nitrogen content and nodulation in vivo was investigated through greenhouse experiments with the legumes Phaseolus vulgaris and Galega orientalis. Both the genetic and phenotypic diversity among the Stenotrophomonas strains was small, which proposes that they have the same origin. The strains brought about changes on the root hairs of Calliandra and they also increased the amount of root hairs. However, no root nodules were detected. The strains produced IAA, protease and lipase in vitro. They also showed plant a growth-promoting effect on G. orientalis, both alone and together with R. galegae HAMBI 540, and also activated nodulation among efficient rhizobia on P. vulgaris in greenhouse. It requires further research to get a better picture about the mechanisms behind the positive effects. The results in this thesis, however, confirm earlier studies concerning Stenotrophomonas positive impact on plants.
Resumo:
Probiooteilla kantakohtaisia vaikutuksia ihmisen immuunijärjestelmään terveillä aikuisilla Probiooteilla on kantakohtaisia tulehduksen välittäjäaineita vähentäviä vaikutuksia ja probioottien yhdistelmien vaikutukset eroavat yksittäisten kantojen vaikutuksista selviää TtM Riina Kekkosen tuoreesta väitöstutkimuksesta. TtM Riina Kekkonen on selvittänyt väitöskirjassaan eri probioottikantojen vaikutuksia immuunivasteeseen valkosolumallissa sekä terveillä aikuisilla lumekontrolloiduissa kliinisissä tutkimuksissa. Aikaisemmin probioottien vaikutuksia on tutkittu lähinnä allergian ja erilaisten vatsavaivojen ehkäisyssä ja hoidossa. Probiootteja sisältäviä tuotteita käyttävät kuluttajat ovat kuitenkin useimmiten terveitä aikuisia, ja probioottien vaikutus terveiden aikuisten immuunijärjestelmään on ollut puutteellisesti selvitettyä. Valkosolumallissa probioottikantojen havaittiin poikkeavan toisistaan niiden kyvyssä aktivoida immuunivasteen välittäjäaineiden, sytokiinien, tuotantoa. Anti-inflammatorisia, eli tulehdusta lievittäviä vaikutuksia nähtiin lähinnä Bifidobacterium ja Propionibacterium sukuihin kuuluvilla kannoilla. Streptococcus ja Leuconostoc sukuihin kuuluvat kannat puolestaan aktivoivat Th1 tyyppistä, soluvälitteistä immuunivastetta. Eri probioottien kombinaatiot eivät saaneet aikaan voimakkaampaa aktivaatiota yksittäisiin kantoihin verrattuna, joka viittaa probioottien keskinäiseen kilpailuun niiden ollessa kontaktissa ihmisen solujen kanssa. Probioottikantojen valinta kliinisiin tutkimuksiin tehtiin niiden anti-inflammatoristen ominaisuuksien perusteella. Parhaita anti-inflammatorisia kantoja olivat B. lactis ssp. animalis Bb12 ja P. freudenreichii ssp. shermanii JS, joiden lisäksi tutkimuksiin valittiin myös L. rhamnosus GG (LGG) hyvin tutkittuna referenssikantana. Solutöiden tulokset eivät olleet täysin verrannollisia kliinisen työn tuloksiin, koska LGG näytti omaavan parhaat anti-inflammatoriset ominaisuudet kliinisissä tutkimuksissa vaikka solutyössä sen aikaansaamat vasteet olivat melko vaimeita. Kolmen viikon kliinisessä tutkimuksessa terveillä aikuisilla LGG alensi mm. tulehdusta kuvaavan C-reaktiivisen proteiinin ja inflammatoristen sytokiinien määrää. Pidemmässä kolmen kuukauden pituisessa kliinisessä tutkimuksessa LGG:llä ei ollut vaikutusta terveiden aikuisten infektiosairastavuuteen, mutta LGG lyhensi vatsavaivojen kestoa. Probioottien vaikutukset immuunijärjestelmään näyttävät olevan kantakohtaisia ja erityisesti Lactobacillus rhamnosus GG:llä havaittiin anti-inflammatorisia vaikutuksia. Valkosolumallia ei tulisi käyttää ainoana probioottikantojen skriinausmenetelmänä niiden immunologisia vaikutuksia selvitettäessä, koska solutöiden tulokset eivät olleet täysin verrannollisia kliinisten tutkimusten tuloksiin. Sen sijaan veren perifeeristen lymfosyyttien eristäminen ja niiden aktivoitumisen selvittäminen lyhytaikaisessa kliinisessä tutkimuksessa voisi toimia suhteellisen helppona skiinausmenetelmänä.
Resumo:
In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.
Resumo:
Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.
Resumo:
Megasphaera cerevisiae, Pectinatus cerevisiiphilus, Pectinatus frisingensis, Selenomonas lacticifex, Zymophilus paucivorans and Zymophilus raffinosivorans are strictly anaerobic Gram-stain-negative bacteria that are able to spoil beer by producing off-flavours and turbidity. They have only been isolated from the beer production chain. The species are phylogenetically affiliated to the Sporomusa sub-branch in the class "Clostridia". Routine cultivation methods for detection of strictly anaerobic bacteria in breweries are time-consuming and do not allow species identification. The main aim of this study was to utilise DNA-based techniques in order to improve detection and identification of the Sporomusa sub-branch beer-spoilage bacteria and to increase understanding of their biodiversity, evolution and natural sources. Practical PCR-based assays were developed for monitoring of M. cerevisiae, Pectinatus species and the group of Sporomusa sub-branch beer spoilers throughout the beer production process. The developed assays reliably differentiated the target bacteria from other brewery-related microbes. The contaminant detection in process samples (10 1,000 cfu/ml) could be accomplished in 2 8 h. Low levels of viable cells in finished beer (≤10 cfu/100 ml) were usually detected after 1 3 d culture enrichment. Time saving compared to cultivation methods was up to 6 d. Based on a polyphasic approach, this study revealed the existence of three new anaerobic spoilage species in the beer production chain, i.e. Megasphaera paucivorans, Megasphaera sueciensis and Pectinatus haikarae. The description of these species enabled establishment of phenotypic and DNA-based methods for their detection and identification. The 16S rRNA gene based phylogenetic analysis of the Sporomusa sub-branch showed that the genus Selenomonas originates from several ancestors and will require reclassification. Moreover, Z. paucivorans and Z. raffinosivorans were found to be in fact members of the genus Propionispira. This relationship implies that they were carried to breweries along with plant material. The brewery-related Megasphaera species formed a distinct sub-group that did not include any sequences from other sources, suggesting that M. cerevisiae, M. paucivorans and M. sueciensis may be uniquely adapted to the brewery ecosystem. M. cerevisiae was also shown to exhibit remarkable resistance against many brewery-related stress conditions. This may partly explain why it is a brewery contaminant. This study showed that DNA-based techniques provide useful tools for obtaining more rapid and specific information about the presence and identity of the strictly anaerobic spoilage bacteria in the beer production chain than is possible using cultivation methods. This should ensure financial benefits to the industry and better product quality to customers. In addition, DNA-based analyses provided new insight into the biodiversity as well as natural sources and relations of the Sporomusa sub-branch bacteria. The data can be exploited for taxonomic classification of these bacteria and for surveillance and control of contaminations.
Resumo:
Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.