71 resultados para genetic background


Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the models conceptualizing work stress, increased risk of health problems arise when high job demands co-occur with low job control (the demand-control model) or the efforts invested by the employee are disproportionately high compared to the rewards received (effort-reward imbalance model). This study examined the association between work stress and early atherosclerosis with particular attention to the role of pre-employment risk factors and genetic background in this association. The subjects were young healthy adults aged 24-39 who were participating in the 21-year follow-up of the ongoing prospective "Cardiovascular Risk in Young Finns" study in 2001-2002. Work stress was evaluated with questionnaires on demand-control model and on effort-reward model. Atherosclerosis was assessed with ultrasound of carotid artery intima-media thickness (IMT). In addition, risk for enhanced atherosclerotic process was assessed by measuring with heart rate variability and heart rate. Pre-employment risk factors, measured at age 12 to 18, included such as body mass index, blood lipids, family history of coronary heart disease, and parental socioeconomic position. Variants of the neuregulin-1 were determined using genomic DNA. The results showed that higher work stress was associated with higher IMT in men. This association was not attenuated by traditional risk factors of atherosclerosis and coronary heart disease or by pre-employment risk factors measured in adolescence. Neuregulin-1 gene moderated the association between work stress and IMT in men. A significant association between work stress and IMT was found only for the T/T genotype of the neuregulin-1 gene but not for other genotypes. Among women an association was found between higher work stress and lower heart rate variability, suggesting higher risk for developing atherosclerosis. These associations could not be explained by demographic characteristics or coronary risk factors. The present findings provide evidence for an association between work stress and atherosclerosis in relatively young population. This association seems to be modified by genetic influences but it does not appear to be confounded by pre-employment adolescent risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a hereditary tumour predisposition syndrome. Its phenotype includes benign cutaneous and uterine leiomyomas (CLM, ULM) with high penetrance and rarer renal cell cancer (RCC), most commonly of papillary type 2 subtype. Over 130 HLRCC families have been identified world-wide but the RCC phenotype seems to concentrate in families from Finland and North America for unknown reasons. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. FH encodes the enzyme fumarase from mitochondrial citric acid cycle. Fumarase enzyme activity or type or site of the FH mutation are unassociated with disease phenotype. The strongest evidence for tumourigenesis mechanism in HLRCC supports a hypoxia inducible factor driven process called pseudohypoxia resulting from accumulation of the fumarase substrate fumarate. In this study, to assess the importance of gene- or exon-level deletions or amplifications of FH in patients with HLRCC-associated phenotypes, multiplex ligation-dependent probe amplification (MLPA) method was used. One novel FH mutation, deletion of exon 1, was found in a Swedish male patient with an evident HLRCC phenotype with CLM, RCC, and a family history of ULM and RCC. Six other patients with CLM and 12 patients with only RCC or uterine leiomyosarcoma (ULMS) remained FH mutation-negative. These results suggest that copy number aberrations of FH or its exons are an infrequent cause of HLRCC and that only co-occurrence of benign tumour types justifies FH-mutation screening in RCC or ULMS patients. Determination of the genomic profile of 11 HLRCC-associated RCCs from Finnish patients was performed by array comparative genomic hybridization. The most common copy number aberrations were gains of 2, 7, and 17 and losses of 13q12.3-q21.1, 14, 18, and X. When compared to aberrations of sporadic papillary RCCs, HLRCC-associated RCCs harboured a distinct DNA copy number profile and lacked many of the changes characterizing the sporadic RCCs. The findings suggest a divergent molecular pathway for tumourigenesis of papillary RCCs in HLRCC. In order to find a genetic modifier of RCC risk in HLRCC, genome-wide linkage and identical by descent (IBD) analysis studies were performed in Finnish HLRCC families with microsatellite marker mapping and SNP-array platforms. The linkage analysis identified only one locus of interest, the FH gene locus in 1q43, but no mutations were found in the genes of the region. IBD analysis yielded no convincing haplotypes shared by RCC patients. Although these results do not exclude the existence of a genetic modifier for RCC risk in HLRCC, they emphasize the role of FH mutations in the malignant tumourigenesis of HLRCC. To study the benign tumours in HLRCC, genome-wide DNA copy number and gene expression profiles of sporadic and HLRCC ULMs were defined with modern SNP- and gene-expression array platforms. The gene expression array suggests novel genes involved in FH-deficient ULM tumourigenesis and novel genes with putative roles in propagation of sporadic ULM. Both the gene expression and copy number profiles of HLRCC ULMs differed from those of sporadic ULMs indicating distinct molecular basis of the FH-deficient HLRCC tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy (ICP) is the most common cholestatic liver disease during pregnancy. The reported incidence varies from 0.4 to 15% of full-term pregnancies. The etiology is heterogeneous but familial clustering is known to occur. Here we have studied the genetic background, epidemiology, and long-term hepatobiliary consequences of ICP. In a register-based nation-wide study (n=1 080 310) the incidence of ICP was 0.94% during 1987-2004. A slightly higher incidence, 1.3%, was found in a hospital-based series (n=5304) among women attending the University Hospital of Helsinki in 1992-1993. Of these 16% (11/69) were familial and showed a higher (92%) recurrence rate than the sporadic (40%) cases. In the register-based epidemiological study, advanced maternal age and, to a lesser degree, parity were identified as new risk factors for ICP. The risk was 3-fold higher in women >39 years of age compared to women <30 years. Multiple pregnancy also associated with an elevated risk. In a genetic study we found no association of ICP with the genes regulating bile salt transport (ABCB4, ABCB11 and ATP8B1). The livers of postmenopausal women with a history of ICP tolerated well the short-term exposure to oral and transdermal estradiol, although the doses used were higher than those in routine clinical use. The response of serum levels of sex hormone-binding globulin (SHBG) to oral estradiol was slightly reduced in the ICP group. Transdermal estradiol had no effect on C-reactive protein (CRP) or SHBG. A number of liver and biliary diseases were found to be associated with ICP. Women with a history of ICP showed elevated risks for non-alcoholic liver cirrhosis (8.2 CI 1.9-36), cholelithiasis and cholecystitis (3.7 CI 3.2-4.2), hepatitis C (3.5 CI 1.6-7.6) and non-alcoholic pancreatitis (3.2 CI 1.7-5.7). In conclusion, ICP complicates around 1% of all full-term pregnancies in Finland and its incidence has remained unchanged since 1987. It is familial in 16% of cases with a higher recurrence rate. Although the cause remains unknown, several risk factors, namely advanced maternal age, parity and multiple pregnancies, can be identified. Both oral and transdermal regimens of postmenopausal hormone therapy (HT) are safe for women with a history of ICP when liver function is considered. Some ICP patients are at risk of other liver and biliary diseases and, contrary to what has been thought, a follow-up is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic seizures, psychomotor regression and ataxia. Different disorders have been classified as PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity that has onset in childhood, being the most common cause of neurodegeneration in children. The primary aim of this thesis was to dissect the molecular genetic background of patients with childhood onset PME by studying candidate genes and attempting to identify novel PME-associated genes. Another specific aim was to study the primary protein properties of the most recently identified member of the NCL-causing proteins, MFSD8. To dissect the genetic background of a cohort of Turkish patients with childhood onset PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which together with 56 mutations found by collaborators raised the total number of known NCL mutations to 364. Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had originally been identified in a subset of mainly Turkish patients as the underlying cause of CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients from nine different countries were provided with a CLN7 molecular diagnosis, denoting the wide geographical occurrence of MFSD8 defects. The mutations are private with only one having been established by a founder-effect in the Roma population from the former Czechoslovakia. All mutations identified except one are associated with the typical clinical picture of variant late-infantile NCL. To address the trafficking properties of MFSD8, lysosomal targeting of the protein was confirmed in both neuronal and non-neuronal cells. The major determinant for this lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes the direct trafficking pathway en route to the lysosomes. Expression studies revealed the neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer as the predominant regions in which MFSD8 is expressed. To identify novel genes associated with childhood onset PME, a single nucleotide polymorphism (SNP) genomewide scan was performed in three small families and 18 sporadic patients followed by homozygosity mapping to determine the candidate loci. One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene that had previously been shown to cause infantile neuroaxonal dystrophy. Application of next-generation sequencing of candidate regions in the remaining two families led to identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 were reported to have early onset PME, rapid disease progression leading to dementia and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and the clinical delineation of their phenotype establish KCTD7 as a gene for early onset PME. The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly associated with childhood onset symptomatic epilepsy. The disease-associated role of TXNDC6 awaits verification through identification of additional mutations in patients with similar phenotypes. Completion of the genetic spectrum underlying childhood onset PMEs and understanding of the gene products functions will comprise important steps towards understanding the underlying pathogenetic mechanisms, and will possibly shed light on the general processes of neurodegeneration and nervous system regulation, facilitating the diagnosis, classification and possibly treatment of the affected cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hostility is a multidimensional construct having wide effects on society. In its different forms, hostility is related to a large array of social and health problems, such as criminality, substance abuse, depression, and cardiovascular risks. Identifying and tackling early-life factors that contribute to hostility may have public health significance. Although the variance in hostility is estimated to be 18-50 percent heritable, there are significant gaps in knowledge regarding the molecular genetics of hostility. It is known that a cold and unsupportive home atmosphere in childhood predicts a child s later hostility. However, the long-term effects of care-giving quality on hostility in adulthood and the role of genes in this association are unclear. The present dissertation is part of the ongoing population-based prospective Young Finns study, which commenced in 1980 with 3596 3-18-year-old boys and girls who were followed for 27 years. The specific aims of the dissertation were first to study the antecedents of hostility by looking at 1) the genetic background, 2) the early environmental predictors, and 3) the gene environment interplay behind hostility. As a second aim, the thesis endeavored to examine 4) the association between hostility and cardiovascular risks, and 5) the moderating effect of demographic factors, such as gender and socioeconomic status, on this association. The study found potential gene polymorphisms from chromosomes 7, 14, 17, and 22 suggestively associated with hostility. Of early environmental influences, breastfeeding and early care-giving were found to predict hostility in adulthood. In addition, a serotonin receptor 2A polymorphism rs6313 moderated the effect of early care-giving on later hostile attitudes. Furthermore, hostility was shown to predict cardiovascular risks, such as metabolic syndrome and inflammation. Finally, parental socioeconomic status was found to moderate the association between anger and early atherosclerosis. The new genetic and early environmental antecedents of hostility identified in this research may help in understanding the development of hostility and its health risks, and in planning appropriate prevention. The significance of early influences on this development is stressed. Although the markers studied are individual- and family-related factors, these may be influenced at the societal level by giving accurate information to all individuals concerned and by improving the societal circumstances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The worldwide health burden caused by the tobacco epidemic highlights the importance of study-ing determinants of smoking behaviour and key factors sustaining nicotine dependence. Despite vast-ranging preventive efforts, smoking remains one of the most deleterious health behaviours, and its genetic and environmental factors warrant continuous investigation. The heritability of smoking behaviour and nicotine dependence has been suggested to be relatively high. Earlier smoking behaviour, nicotine dependence, socio-economic position and demographic factors have all been shown to be associated with smoking cessation. This thesis aimed to examine various aspects of smoking behaviour and nicotine dependence from an epidemiological and genetic per-spective. Data for Studies I and IV were obtained from the Older Finnish Twin Cohort, a postal health sur-vey conducted in 1975, 1981 and 1990 on same-sexed pairs and in 1996-1997 on male-female adult pairs. The number of ever-smoking participants was 8941 in Study I and 3069 in Study IV. Data for Studies II and III came from the Family Study of Cigarette Smoking - Vulnerability to Nicotine Addiction. This study is linked to the Older Finnish Twin Cohort with new data collec-tion during 2001-2006 that focused on smoking twin pairs and their family members. The meas-ures included intensive telephone interviews, blood samples and additional postal questionnaires. The numbers of ever-smoking participants was 1370 in Study II and 529 in Study III. Study I examined whether a genetic component underlies smoking behaviour among Finnish adults. Genetic factors were important in the amount smoked and smoking cessation, with about half of the phenotypic differences explained by genetic variance. A novel finding was that genetic influences on amount smoked and smoking cessation were largely independent of genetic influ-ences on age at initiation. This result has implications for defining phenotypes in the search for genes underlying smoking behaviour. Furthermore, even if smoking initiation is postponed to a later age, potential vulnerability to subsequent nicotine dependence cannot be completely inhib-ited. Study II investigated the effect of genetic and environmental factors on nicotine dependence, as measured by the novel multidimensional Nicotine Dependence Syndrome Scale (NDSS). This scale was validated in the Finnish data. The NDSS correlated highly with other established nico-tine dependence scales (FTND and DSM-IV), suggesting that this new scale would be a feasible and valid measure for identifying nicotine-dependent smokers among the ever-smoking popula-tion. About one-third of the phenotypic variation in nicotine dependence in this sample was ex-plained by genetic influences. Study III aimed at identifying chromosomal regions harbouring genes that influence smoking be-haviour and nicotine dependence. Linkage analysis of family data revealed that for smoker and nicotine dependence phenotypes as well as for co-morbidity between nicotine dependence and alcohol use signals on specific chromosome regions (chromosomes 2q33, 5q12, 5q34 7q21, 7q31, 10q25, 11p15, 20p13) exist. Results further support the hypothesis that smoking behaviour phe-notypes have a genetic background. Study IV examined associations of smoking behaviour, socio-economic position and transition of marital status with smoking cessation. Indicators of socio-economic position were important pre-dictors of smoking cessation even when adjusted for previous smoking behaviour. Getting married was associated with an increased probability of cessation in men, a finding confirmed among dis-cordant twin pairs. Thus, having a partner appears to have a positive impact on smoking cessation. In conclusion, nicotine dependence and smoking behaviour demonstrate significant genetic liabil-ity, but also substantial environmental influences among Finnish adults. Smoking initiation should be prevented or at least postponed to a later age. Although genetic factors are important in nicotine dependence and smoking behaviour, societal actions still have a primary role in tobacco control and smoking prevalence. Future studies should examine the complex interactions between genetic and environmental factors in nicotine dependence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lupus erythematosus (LE) is a chronic, heterogeneous autoimmune disorder with abnormal immune responses, including production of autoantibodies and immune complexes. Clinical presentations of the disease range from mild cutaneous manifestations to a more generalised systemic involvement of internal organs. Cutaneous (CLE) forms are further subclassified into discoid LE (DLE), subacute cutaneous LE (SCLE) and acute cutaneous lupus erythematosus (ACLE), and may later progress to systemic disease (SLE). Both genetic and environmental factors contribute to the disease, although the precise aetiology is still elusive. Furthermore, complex gene-gene or gene-environment interactions may result in different subphenotypes of lupus. The genetic background of CLE is poorly known and only a few genes are confirmed, while the number of robust genetic associations in SLE exceeds 30. The aim of this thesis was to characterise the recruited patients clinically, and identify genetic variants conferring susceptibility to cutaneous variants of LE. Given that cutaneous and systemic disease may share underlying genetic factors, putative CLE candidate genes for genotyping were selected among those showing strong evidence of association in SLE. The correlation between relevant clinical manifestations and risk genotypes was investigated in order to find specific subphenotype associations. In addition, epistatic interactions in SLE were studied. Finally, the role of tissue degrading matrix metalloproteinases (MMP) in LE tissue injury was explored. These studies were conducted in Finnish case-control and family cohort, and Swedish case-control cohort. The clinical picture of the patients in terms of cutaneous, haematological and immunological findings resembled that described in the contemporary literature. However, the proportion of daily smokers was very high supporting the role of smoking in disease aetiology. The results confirmed that, even though clinically distinct entities, CLE and SLE share predisposing genetic factors. For the first time it was shown that known SLE susceptibility genes IRF5 and TYK2 also increase the risk of CLE. A tendency toward gene-gene interaction between these genes was found in SLE. As a remarkable novel finding, it was observed that ITGAM polymorphisms associated even more strongly to DLE than SLE, and the risk estimates were substantially higher than those reported for SLE. Several other recently identified SLE susceptibility genes showed signs of good or modest association especially in DLE. Subphenotype analyses indicated possible associations to clinical features, but marginally significant results reflected lack of sufficient power for these studies. Thorough immunohistochemical analyses of several MMPs demonstrated a role in epidermal changes and dermal tissue remodelling in diseased skin, and suggested that targeted action using selective MMP inhibitors may reduce lupus-induced damage in inflamed tissues. In conclusion, the results provide an insight into the genetics of CLE and demonstrate that genetic predisposition is at least in part shared between cutaneous and systemic variants of LE. This doctoral study has contributed IRF5, TYK2, ITGAM and several other novel genes to the so far short list of genes implicated in CLE susceptibility. Detailed examination of the function of these genes in CLE pathogenesis warrants further studies. Furthermore, the results support the need of subphenotype analysis with sample sizes large enough to reveal possible specific disease associations in order to better understand the heterogeneous nature and clinical specificities of the disease. Comprehensive analysis of clinical data suggests that smoking is an environmental triggering factor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.