16 resultados para acetyl-CoA carboxylase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-acetyl-β-D-glucosaminidaasi (NAGaasi) on glykosidaaseihin kuuluva, solujen lysosomeissa esiintyvä entsyymi, jota vapautuu maitoon utaretulehduksen aikana vaurioituneista utareen epiteelisoluista, neutrofiileistä ja makrofageista. NAGaasientsyymiaktiivisuuden on useissa tutkimuksissa havaittu korreloivan utareen tulehdustilan ja maidon soluluvun (SCC) kanssa ja sitä on ehdotettu käytettäväksi utareen epiteelisolutuhon mittaamiseen yksinään tai yhdistettynä SCC:n määritykseen. Koska saostuminen ei häiritse NAGaasi-entsyymiaktiivisuuden mittausta maidosta, entsyymiaktiivisuus ei muutu maitoa säilytettäessä ja entsyymin mittaaminen on melko yksinkertaista ja nopeaa, menetelmä vaikuttaisi sopivan hyvin seulontatestiksi piileville utaretulehduksille. NAGaasin käyttö on toistaiseksi rajoittunut tutkimuskäyttöön. Sen hyödyntämistä vaikeuttaa se, että terveille lehmille eri tutkimuksissa määritetyissä NAGaasi-entsyymiaktiivisuuden viitearvoissa on suurta vaihtelua. NAGaasi-entsyymiaktiivisuus maidossa on useiden tutkimusten mukaan korkeampi silloin, kun tulehduksen on aiheuttanut jokin merkittävä patogeeni kuin silloin, kun tulehduksen taustalla on vähäpätöinen patogeeni. Lypsykauden vaiheen on havaittu vaikuttavan maidon NAGaasi-entsyymiaktiivisuuteen siten, että aktiivisuudet ovat korkeampia heti poikimisen jälkeen ja lypsykauden lopulla. On myös havaittu, että normaalimaidossa NAGaasi-entsyymiaktiivisuus on hieman korkeampi loppumaidossa kuin alkumaidossa. Poikimakerran vaikutuksista NAGaasi-entsyymiaktiivisuuteen on ristiriitaisia tutkimustuloksia. Tämän tutkimuksen tavoitteena oli määrittää NAGaasi-entsyymiaktiivisuuden viitearvot terveen sekä utaretulehdusta sairastavan lypsylehmän maidossa, sekä selvittää tulehduksen voimakkuuden, aiheuttajapatogeenin, poikimakerran ja lypsykauden vaiheen vaikutusta kyseisen entsyymin aktiivisuuteen maidossa. Tutkimusaineistossa oli mukana kaikkiaan 838 vuosina 2000–2010 otettua maitonäytettä 62 eri lypsykarjatilalta Suomesta ja Virosta. Normaalimaidon NAGaasi-entsyymiaktiivisuuden viitearvot määritettiin yhdeksältä suomalaiselta lypsykarjatilalta kerätyistä 196 maitonäytteestä, jotka täyttivät asettamamme normaalimaidon kriteerit. Normaalimaidon kriteerit olivat seuraavat: SCC < 100 000, lehmällä ei ole utaretulehduksen oireita, poikimisesta on kulunut aikaa yli 30 vuorokautta ja edellisestä lypsystä yli 6 tuntia. NAGaasi-entsyymiaktiivisuus mitattiin modifioidulla Mattilan menetelmällä (Mattila 1985) vakioiduissa olosuhteissa. Aineisto analysoitiin käyttäen Stata Intercooler tilasto-ohjelman versiota 11.0 (Stata Corporation, Texas, USA). Maidon NAGaasientsyymiaktiivisuuteen terveessä neljänneksessä vaikuttavia tekijöitä tutkittiin lineaarisella sekamallilla, jossa sekoittavana tekijänä oli tila. SCC:n ja NAGaasi-entsyymiaktiivisuuden korrelaatiota arvioitiin terveillä lehmillä, piilevää utaretulehdusta sairastaneilla lehmillä ja koko aineistossa. Korrelaatiot laskettiin Pearsonin korrelaatiokertoimella. Tilastollisesti merkitsevänä raja-arvona kaikissa analyyseissä pidettiin p < 0.05. Normaalimaidon NAGaasi-entsyymiaktiivisuuden viitearvoiksi lehmillä, joilla poikimisesta oli kulunut yli 30 vrk, saatiin 0,09–1,04 pmol/min/μl maitoa. Verrattuna normaalimaidon NAGaasi-entsyymiaktiivisuuksien keskiarvoon (0,56) ja piilevää utaretulehdusta sairastaneiden lehmien NAGaasi-entsyymiaktiivisuuksien keskiarvoon (2,49), kliinistä utaretulehdusta sairastavien lehmien maidon NAGaasi-entsyymiaktiivisuus oli keskimäärin selvästi korkeampi (16,65). Keskiarvoissa oli selvä ero paikallisoireisten (12,24) ja yleisoireisten (17,74) lehmien välillä. Terveiden neljännesten maitonäytteistä määritetyn NAGaasi-entsyymiaktiivisuuden ja SCC:n välillä ei havaittu korrelaatiota. Piilevässä utaretulehduksessa havaittiin positiivinen korrelaatio (0,74) maidon NAGaasientsyymiaktiivisuuden ja SCC:n välillä. NAGaasi-entsyymiaktiivisuuteen vaikuttivat tilastollisesti merkitsevästi SCC, poikimisesta kulunut aika ja poikimakerta. Eri patogeeniryhmien osalta havaitsimme, että neljänneksissä, joista eristettiin vähäpätöinen patogeeni, NAGaasi-entsyymiaktiivisuus oli selvästi matalampi kuin neljänneksissä, joista eristettiin merkittävä patogeeni. NAGaasi-entsyymiaktiivisuuden keskiarvoksi vähäpätöisille patogeeneille (KNS, koryneformi) saatiin 2,82 ja merkittäville patogeeneille (S. aureus, Str. uberis, Str, agalactiae, Str. dysgalactiae, E.coli) 16,87.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence show that kinins, notably bradykinin (BK) and kallidin, have cardioprotective effects. To these include reduction of left ventricular hypertrophy (LVH) and progression of heart failure. The effects are mediated through two G protein-coupled receptors- bradykinin type-2 receptor (BK-2R) and bradykinin type -1 receptor (BK-1R). The widely accepted cardioprotective effects of BK-receptors relate to triggering the production and release of vasodilating nitric oxide (NO) by endothelial cells. They also exert anti-proliferative effects on fibroblasts and anti-hypertrophic effects on myocytes, and thus may play an essential role in the cardioprotective response to myocardial injury. The role for BK-1Rs in HF is based on experimental animal models, where the receptors have been linked to cardioprotective- but also to cardiotoxic -effects. The BK-1Rs are induced under inflammatory and ischemic conditions, shown in animal models; no previous reports, concerning BK-1Rs in human heart failure, have been presented. The expression of BK-2Rs is down-regulated in human end-stage heart failure. Present results showed that, in these patients, the BK-1Rs were up-regulated, suggesting that also BK-1Rs are involved in the pathogenesis of human heart failure. The receptors were localized mainly in the endothelium of intramyocardial coronary vessels, and correlated with the increased TNF-α expression in the myocardial coronary vessels. Moreover, in cultured endothelial cells, TNF-α was a potent trigger of BK-1Rs. These results suggest that cytokines may be responsible for the up-regulation of BK-1Rs in human heart failure. A linear relationship between BK-2R mRNA and protein expression in normal and failing human left ventricles implies that the BK-2Rs are regulated on the transcriptional level, at least in human myocardium. The expression of BK-2Rs correlated positively with age in normal and dilated hearts (IDC). The results suggest that human hearts adapts to age-related changes, by up-regulating the expression of cardioprotective BK-2Rs. Also, in the BK-2R promoter polymorphism -58 T/C, the C-allele was accumulated in cardiomyopathy patients which may partially explain the reduced number of BK-2Rs. Statins reduce the level of plasma cholesterol, but also exert several non-cholesterol-dependent effects. These effects were studied in human coronary arterial endothelial cells (hCAEC) and incubation with lovastatin induced both BK-1 and BK-2Rs in a time and concentration-dependent way. The induced BK-2Rs were functionally active, thus NO production and cGMP signaling was increased. Induction was abrogated by mevalonate, a direct HMG-CoA metabolite. Lovastatin is known to inhibit Rho activation, and by a selective RhoA kinase inhibitor (Y27632), a similar induction of BK-2R expression as with lovastatin. Interestingly a COX-2-inhibitor (NS398) inhibited this lovastatin-induction of BK-2Rs, suggesting that COX-2 inhibitors may affect the endothelial BK-2Rs, in a negative fashion. Hypoxia is a common denominator in HF but also in other cardiovascular diseases. An induction of BK-2Rs in mild hypoxic conditions was shown in cultured hCAECs, which was abolished by a specific BK-2R inhibitor Icatibant. These receptors were functionally active, thus BK increased and Icatibant inhibited the production of NO. In rat myocardium the expression of BK-2R was increased in the endothelium of vessels, forming at the border zone, between the scar tissue and the healthy myocardium. Moreover, in in vitro wound-healing assay, endothelial cells were cultured under hypoxic conditions and BK significantly increased the migration of these cells and as Icatibant inhibited it. These results show, that mild hypoxia triggers a temporal expression of functionally active BK-2Rs in human and rat endothelial cells, supporting a role for BK-2Rs, in hypoxia induced angiogenesis. Our and previous results show, that BK-Rs have an impact on the cardiovascular diseases. In humans, at the end stage of heart failure, the BK-2Rs are down-regulated and BK-1Rs induced. Whether the up-regulation of BK-1Rs, is a compensatory mechanism against the down-regulation of BK-2Rs, or merely reflects the end point of heart failure, remains to bee seen. In a clinical point of view, the up-regulation of BK-2Rs, under hypoxic conditions or statin treatment, suggests that, the induction of BK-2Rs is protective in cardiovascular pathologies and those treatments activating BK-2Rs, might give additional tools in treating heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The incidence of all forms of congenital heart defects is 0.75%. For patients with congenital heart defects, life-expectancy has improved with new treatment modalities. Structural heart defects may require surgical or catheter treatment which may be corrective or palliative. Even those with corrective therapy need regular follow-up due to residual lesions, late sequelae, and possible complications after interventions. Aims: The aim of this thesis was to evaluate cardiac function before and after treatment for volume overload of the right ventricle (RV) caused by atrial septal defect (ASD), volume overload of the left ventricle (LV) caused by patent ductus arteriosus (PDA), and pressure overload of the LV caused by coarctation of the aorta (CoA), and to evaluate cardiac function in patients with Mulibrey nanism. Methods: In Study I, of the 24 children with ASD, 7 underwent surgical correction and 17 percutaneous occlusion of ASD. Study II had 33 patients with PDA undergoing percutaneous occlusion. In Study III, 28 patients with CoA underwent either surgical correction or percutaneous balloon dilatation of CoA. Study IV comprised 26 children with Mulibrey nanism. A total of 76 healthy voluntary children were examined as a control group. In each study, controls were matched to patients. All patients and controls underwent clinical cardiovascular examinations, two-dimensional (2D) and three-dimensional (3D) echocardiographic examinations, and blood sampling for measurement of natriuretic peptides prior to the intervention and twice or three times thereafter. Control children were examined once by 2D and 3D echocardiography. M-mode echocardiography was performed from the parasternal long axis view directed by 2D echocardiography. The left atrium-to-aorta (LA/Ao) ratio was calculated as an index of LA size. The end-diastolic and end-systolic dimensions of LV as well as the end-diastolic thicknesses of the interventricular septum and LV posterior wall were measured. LV volumes, and the fractional shortening (FS) and ejection fraction (EF) as indices of contractility were then calculated, and the z scores of LV dimensions determined. Diastolic function of LV was estimated from the mitral inflow signal obtained by Doppler echocardiography. In three-dimensional echocardiography, time-volume curves were used to determine end-diastolic and end-systolic volumes, stroke volume, and EF. Diastolic and systolic function of LV was estimated from the calculated first derivatives of these curves. Results: (I): In all children with ASD, during the one-year follow-up, the z score of the RV end-diastolic diameter decreased and that of LV increased. However, dilatation of RV did not resolve entirely during the follow-up in either treatment group. In addition, the size of LV increased more slowly in the surgical subgroup but reached control levels in both groups. Concentrations of natriuretic peptides in patients treated percutaneously increased during the first month after ASD closure and normalized thereafter, but in patients treated surgically, they remained higher than in controls. (II): In the PDA group, at baseline, the end-diastolic diameter of LV measured over 2SD in 5 of 33 patients. The median N-terminal pro-brain natriuretic peptide (proBNP) concentration before closure measured 72 ng/l in the control group and 141 ng/l in the PDA group (P = 0.001) and 6 months after closure measured 78.5 ng/l (P = NS). Patients differed from control subjects in indices of LV diastolic and systolic function at baseline, but by the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV end-diastolic volume decreased significantly during follow-up. (III): Before repair, the size and wall thickness of LV were higher in patients with CoA than in controls. Systolic blood pressure measured a median 123 mm Hg in patients before repair (P < 0.001) and 103 mm Hg one year thereafter, and 101 mm Hg in controls. The diameter of the coarctation segment measured a median 3.0 mm at baseline, and 7.9 at the 12-month (P = 0.006) follow-up. Thicknesses of the interventricular septum and posterior wall of the LV decreased after repair but increased to the initial level one year thereafter. The velocity time integrals of mitral inflow increased, but no changes were evident in LV dimensions or contractility. During follow-up, serum levels of natriuretic peptides decreased correlating with diastolic and systolic indices of LV function in 2D and 3D echocardiography. (IV): In 2D echocardiography, the interventricular septum and LV posterior wall were thicker, and velocity time integrals of mitral inflow shorter in patients with Mulibrey nanism than in controls. In 3D echocardiography, LV end-diastolic volume measured a median 51.9 (range 33.3 to 73.4) ml/m² in patients and 59.7 (range 37.6 to 87.6) ml/m² in controls (P = 0.040), and serum levels of ANPN and proBNP a median 0.54 (range 0.04 to 4.7) nmol/l and 289 (range 18 to 9170) ng/l, in patients and 0.28 (range 0.09 to 0.72) nmol/l (P < 0.001) and 54 (range 26 to 139) ng/l (P < 0.001) in controls. They correlated with several indices of diastolic LV function. Conclusions (I): During the one-year follow-up after the ASD closure, RV size decreased but did not normalize in all patients. The size of the LV normalized after ASD closure but the increase in LV size was slower in patients treated surgically than in those treated with the percutaneous technique. Serum levels of ANPN and proBNP were elevated prior to ASD closure but decreased thereafter to control levels in patients treated with the percutaneous technique but not in those treated surgically. (II): Changes in LV volume and function caused by PDA disappeared by 6 months after percutaneous closure. Even the children with normal-sized LV benefited from the procedure. (III): After repair of CoA, the RV size and the velocity time integrals of mitral inflow increased, and serum levels of natriuretic peptides decreased. Patients need close follow-up, despite cessation of LV pressure overload, since LV hypertrophy persisted even in normotensive patients with normal growth of the coarctation segment. (IV): In children with Mulibrey nanism, the LV wall was hypertrophied, with myocardial restriction and impairment of LV function. Significant correlations appeared between indices of LV function, size of the left atrium, and levels of natriuretic peptides, indicating that measurement of serum levels of natriuretic peptides can be used in the clinical follow-up of this patient group despite its dependence on loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kohonneiden kolesterolipitoisuuksien alentamisessa käytettävien statiinien hyödyt sydän- ja verisuonisairauksien estossa on vahvasti osoitettu ja niiden käyttö on niin Suomessa kuin muuallakin maailmassa kasvanut voimakkaasti – Suomessa statiininkäyttäjiä on noin 600 000. Statiinilääkitys on pitkäaikaisessakin käytössä melko hyvin siedetty, mutta yleisimpinä haittavaikutuksina voi ilmetä lihasheikkoutta, -kipua ja -kramppeja, jotka voivat edetä jopa henkeä uhkaavaksi lihasvaurioksi. Lihashaittariski suurenee suhteessa statiiniannokseen ja plasman statiinipitoisuuksiin. Statiinien plasmapitoisuuksissa, tehossa ja haittavaikutusten ilmenemisessä on suuria potilaskohtaisia eroja. SLCO1B1-geenin koodaama OATP1B1-kuljetusproteiini kuljettaa monia elimistön omia aineita ja lääkeaineita verenkierrosta solukalvon läpi maksasoluun, mm. statiineja, joiden kolesterolia alentava vaikutus ja poistuminen elimistöstä tapahtuvat pääosin maksassa. Erään SLCO1B1-geenin nukleotidimuutoksen (c.521T>C) tiedetään heikentävän OATP1B1:n kuljetustehoa. Tässä väitöskirjatyössä selvitettiin SLCO1B1-geenin perinnöllistä muuntelua suomalaisilla ja eri väestöissä maailmanlaajuisesti. Lisäksi selvitettiin SLCO1B1:n muunnosten vaikutusta eri statiinien pitoisuuksiin (farmakokinetiikka) ja vaikutuksiin (farmakodynamiikka) sekä kolesteroliaineenvaihduntaan. Näihin tutkimuksiin valittiin SLCO1B1-genotyypin perusteella terveitä vapaaehtoisia koehenkilöitä, joille annettiin eri päivinä kerta-annos kutakin tutkittavaa statiinia: fluvastatiinia, pravastatiinia, simvastatiinia, rosuvastatiinia ja atorvastatiinia. Verinäytteistä määritettiin plasman statiinien ja niiden aineenvaihduntatuotteiden sekä kolesterolin ja sen muodostumista ja imeytymistä kuvaavien merkkiaineiden pitoisuuksia. Toiminnallisesti merkittävien SLCO1B1-geenimuunnosten esiintyvyydessä todettiin suuria eroja eri väestöjen välillä. Suomalaisilla SLCO1B1 c.521TC-genotyypin (geenimuunnos toisessa vastinkromosomissa) esiintyvyys oli noin 32 % ja SLCO1B1 c.521CC-genotyypin (geenimuunnos molemmissa vastinkromosomeissa) esiintyvyys noin 4 %. Globaalisti geenimuunnosten esiintyvyys korreloi maapallon leveyspiirien kanssa siten, että matalaan transportteriaktiivisuuteen johtavat muunnokset olivat yleisimpiä pohjoisessa ja korkeaan aktiivisuuteen johtavat päiväntasaajan lähellä asuvilla väestöillä. SLCO1B1-genotyypillä oli merkittävä vaikutus statiinien plasmapitoisuksiin lukuun ottamatta fluvastatiinia. Simvastatiinihapon plasmapitoisuudet olivat keskimäärin 220 %, atorvastatiinin 140 %, pravastatiinin 90 % ja rosuvastatiinin 70 % suuremmat c.521CC-genotyypin omaavilla koehenkilöillä verrattuna normaalin c.521TT-genotyypin omaaviin. Genotyypillä ei ollut merkittävää vaikutusta minkään statiinin tehoon tässä kerta-annostutkimuksessa, mutta geenimuunnoksen kantajilla perustason kolesterolisynteesinopeus oli suurempi. Tulokset osoittavat, että SLCO1B1 c.521T>C geenimuunnos on varsin yleinen suomalaisilla ja muilla ei-afrikkalaisilla väestöillä. Tämä geenimuunnos voi altistaa erityisesti simvastatiinin, mutta myös atorvastatiinin, pravastatiinin ja rosuvastatiinin, aiheuttamille lihashaitoille suurentamalla niiden plasmapitoisuuksia. SLCO1B1:n geenimuunnoksen testaamista voidaan tulevaisuudessa käyttää apuna valittaessa sopivaa statiinilääkitystä ja -annosta potilaalle, ja näin parantaa sekä statiinihoidon turvallisuutta että tehoa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogeneesi on tärkeä ilmiö elimistön fysiologiassa, mutta myös lukuisissa patologisissa tiloissa. Angiogeneesi on monivaiheinen prosessi, joka sisältää angiogeneesiä indusoivia ja sitä inhiboivia tekijöitä tasapainossa keskenään. Useat tutkimukset puoltavat sitä, että tymosiini ȕ4 (Tȕ4) ja tetrapeptidi Ac-SDKP (N-asetyyliseryyli- aspartyyli-lysyyli-proliini) indusoivat angiogeneesiä in vitro ja in vivo. Tutkimukset viittaavat myös siihen, että prolyylioligopeptidaasi (POP) hydrolysoi peptidifragmentin Ac- SDKP Tȕ4:n (43 ah) proliinin jälkeen. POP on laajalti esiintyvä seriiniproteaasi, joka pystyy pilkkomaan vain alle 30 aminohapon oligopeptidejä. Tȕ4:n tulee siksi pilkkoutua ensin jonkin, vielä tuntemattoman peptidaasin johdosta. POP:ia on löydetty eniten aivoista, minkä vuoksi sitä on tutkittu varsinkin muistin ja oppimisen häiriötiloissa sekä neurodegeneratiivisten sairausten yhteydessä. POP:in todellinen fysiologinen merkitys on kuitenkin vielä selvittämättä. Tämän pro gradun kirjallisuusosiossa selvitetään angiogeneesiin liittyvien tekijöiden yhteyksiä sekä kuvataan angiogeenisten Tȕ4:n, Ac-SDKP:n ja POP:in ominaisuuksia, esiintymistä ja toimintaa. Kokeellisen osion tarkoituksena oli osoittaa, osallistuvatko POP ja Tȕ4 tetrapeptidin Ac-SDKP muodostumiseen ja kapillaarimuodostumiseen ja edelleen, voidaanko POPaktiivisuutta, tetrapeptidi- ja kapillaarimuodostumista estää spesifisellä POP-inhibiittorilla, KYP-2047:llä. Kokeellinen osa oli kaksiosainen. Ensimmäisessä osassa tutkittiin POPaktiivisuutta ja suoritettiin Ac-SDKP –pitoisuusmittauksia ajanjaksolla 0-180 min Wistarkannan rotista tehdyillä homogenaateilla. Tutkimusryhminä olivat 0,1 ja 0,5 μM KYP-2047 (+2 μM Tȕ4), 1:20 (0,625 μM) humaaniperäinen rekombinantti-POP (+ 2 μM Tȕ4), 2 μM Tȕ4 (pos. kontrolli) ja raakahomogenaatti (neg. kontrolli). Toisessa osassa tutkittiin kapillaarimuodostumista ajanjaksolla 0-180 min humaaniperäisillä napanuoralaskimon primaariendoteelisoluilla MatrigelTM Matrix -päällystetyllä 48- kuoppalevyllä, jolle oli siirrostettu 50 000 solua/kuoppa. Naudan seerumilla ja antibiooteilla käsitellyt tutkimusryhmät olivat 5 ja 10 μM KYP-2047 (+4 μM Tȕ4), 1:20 (0,625 μM) humaaniperäinen rekombinantti-POP (+4 μM Tȕ4), 4 μM Tȕ4 (pos. kontrolli) ja DMEM (neg. kontrolli). Kuoppia inkuboitiin ja kapillaarimuodostuminen kuvattiin valomikroskoopilla digitaalikameralla. Kutakin tutkimusryhmää pipetoitiin kolmeen rinnakkaiseen kuoppaan ja kokeet toistettiin neljästi. Sulkeutuneiden kapillaarien lukumäärä laskettiin manuaalisesti ja tuloksista tehtiin tilastollinen analyysi. 7ȕ4:n ja POP:in havaittiin molempien osallistuvan tetrapeptidin AC-SDKP muodostumiseen munuaishomogenaateissa. Primaariendoteelisolut muodostivat selkeitä kapillaareja Matrigelilla, erityisesti POP- ja Tȕ4–ryhmissä. KYP-2047 inhiboi tehokkaasti POP:ia kaikissa kokeissa osoittautuen hyväksi antiangiogeeniseksi yhdisteeksi. Angiogeneesin mekanismien ja POP:in, Tȕ4:n ja Ac-SDKP:n yhteyksien selvittäminen vaatii luonnollisesti vielä lisätutkimuksia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aim of this thesis was the evaluation of the perfusion of normal organs in cats using contrast-enhanced ultrasound (CEUS), to serve as a reference for later clinical studies. Little is known of the use of CEUS in cats, especially regarding its safety and the effects of anesthesia on the procedure, thus, secondary aims here were to validate the quantitative analyzing method, to investigate the biological effects of CEUS on feline kidneys, and to assess the effect of anesthesia on splenic perfusion in cats undergoing CEUS. -- The studies were conducted on healthy, young, purpose-bred cats. CEUS of the liver, left kidney, spleen, pancreas, small intestine, and mesenteric lymph nodes was performed to characterize the normal perfusion of these organs on ten anesthetized, male cats. To validate the quantification method, the effects of placement and size of the region of interest (ROI) on perfusion parameters were investigated using CEUS: Three separate sets of ROIs were placed in the kidney cortex, varying in location, size, or depth. The biological effects of CEUS on feline kidneys were estimated by measuring urinary enzymatic activities, analyzing urinary specific gravity, pH, protein, creatinine, albumin, and sediment, and measuring plasma urea and creatinine concentrations before and after CEUS. Finally, the impact of anesthesia on contrast enhancement of the spleen was investigated by imaging cats with CEUS first awake and later under anesthesia on separate days. -- Typical perfusion patterns were found for each of the studied organs. The liver had a gradual and more heterogeneous perfusion pattern due to its dual blood flow and close proximity to the diaphragm. An obvious and statistically significant difference emerged in the perfusion between the kidney cortex and medulla. Enhancement in the spleen was very heterogeneous at the beginning of imaging, indicating focal dissimilarities in perfusion. No significant differences emerged in the perfusion parameters between the pancreas, small intestine, and mesenteric lymph nodes. -- The ROI placement and size were found to have an influence on the quantitative measurements of CEUS. Increasing the depth or the size of the ROI decreased the peak intensity value significantly, suggesting that where and how the ROI is placed does matter in quantitative analyses. --- A significant increase occurred in the urinary N-acetyl-β-D-glucosaminidase (NAG) to creatinine ratio after CEUS. No changes were noted in the serum biochemistry profile after CEUS, with the exception of a small decrease in blood urea concentration. The magnitude of the rise in the NAG/creatinine ratio was, however, less than the circadian variation reported earlier in healthy cats. Thus, the changes observed in the laboratory values after CEUS of the left kidney did not indicate any detrimental effects in kidneys. Heterogeneity of the spleen was observed to be less and time of first contrast appearance earlier in nonanesthetized cats than in anesthetized ones, suggesting that anesthesia increases heterogeneity of the feline spleen in CEUS. ---- In conclusion, the results suggest that CEUS can be used also in feline veterinary patients as an additional diagnostics aid. The perfusion patterns found in the imaged organs were typical and similar to those seen earlier in other species, with the exception of the heterogeneous perfusion pattern in the cat spleen. Differences in the perfusion between organs corresponded with physiology. Based on the results, estimation of focal perfusion defects of the spleen in cats should be performed with caution and after the disappearance of the initial heterogeneity, especially in anesthetized or sedated cats. Finally, these results indicate that CEUS can be used safely to analyze kidney perfusion also in cats. Future clinical studies are needed to evaluate the full potential of CEUS in feline medicine as a tool for diagnosing lesions in various organ systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.