27 resultados para Low genetic diversity
Resumo:
We described the patterns and extent of microsatellite DNA variation in historical and present-day Atlantic salmon (Salmo salar L.) stocks in the Baltic Sea and neighbouring areas, and in European whitefish (Coregonus lavaretus) ecotypes, populations and run-timing types in Finland. Moreover, the amount and pattern of genetic diversity in historical salmon populations before human impact were described, and the proportion of diversity maintained in the present hatchery stocks evaluated. Salmon populations in the Baltic Sea were, on average, significantly less variable than eastern Atlantic populations, and the diversity of landlocked populations (Lakes Vänern, Saimaa, Onega and Ladoga) was in turn significantly lower than that of anadromous salmon populations in the Baltic Sea populations. Within the Baltic Sea, the anadromous populations of Atlantic salmon formed three clear groups, corresponding to the northern (Gulf of Bothnia), eastern (Gulf of Finland and eastern Baltic Main Basin) and southern (western Baltic Main Basin) regions. Based on microsatellite data, three salmon population groups in the Baltic Sea were considered potentially different colonization lineages. In short- and long-term breeding programmes of Atlantic salmon, the average observed rate of loss of alleles was 4.9% and 2.0% per generation and the average rate of loss of heterozygosity was 1.4% and 1% per generation, respectively. When comparing the genetic parameters of stocks before and after hatchery breeding of several successive generations (Rivers Iijoki and Oulujoki), statistically significant changes in allele frequencies were common, while large wild stock in the Teno River has remained temporally very stable over 56 years. Despite the observed losses of genetic diversity in broodstock breeding, a large proportion of the genetic resources of the extirpated stocks are still conserved in the broodstocks. Genetic differentiation among European whitefish ecotypes was generally low, thus giving support to the hypothesis of one native European whitefish species in Fennoscandia. Among the ecotypes, the northern, large sparsely rakered, bottom-dwelling whitefish was the most unique. The known genetic differences in quantitative traits have thus either developed independently of potential phylogenetic lineages, or the lineages have mixed and the quantitative traits of the ecotypes, like gill-raker number, have later changed according to environment and selection pressures. Overall, genetic distances between the anadromous whitefish populations along the Finnish coast, especially in the Bothnian Bay area, were small. Wild whitefish populations studied had slightly higher allelic diversity than hatchery-reared populations in corresponding rivers.
Resumo:
Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.
Resumo:
Syanobakteerit (sinilevät) ovat olleet Itämeressä koko nykymuotoisen Itämeren ajan, sillä paleolimnologiset todisteet niiden olemassaolosta Itämeren alueella ovat noin 7000 vuoden takaa. Syanobakteerien massaesiintymät eli kukinnat ovat kuitenkin sekä levinneet laajemmille alueille että tulleet voimakkaimmiksi viimeisten vuosikymmenien aikana. Tähän on osasyynä ihmisten aiheuttama kuormitus, joka rehevöittää Itämerta. Suomenlahti, jota tämä tutkimus käsittelee, on kärsinyt tästä rehevöitymiskehityksestä muita Itämeren altaita enemmän. Syanobakteerit muodostavat jokakesäisiä kukintoja Suomenlahdella - niin sen avomerialueilla kuin rannoillakin. Yleisimmät kukintoja muodostavat syanobakteerisuvut ovat Nodularia, Anabaena ja Aphanizomenon. Kukinnat aiheuttavat paitsi esteettistä haittaa myös terveydellisen riskitekijän. Niiden myrkyllisyys liitetään usein Nodularia-suvun tuottamaan nodulariini-maksamyrkkyyn. Itämeren Aphanizomenon-suvun on todettu olevan myrkytön. Vaikka Itämeren kukintoja aiheuttavista Nodularia- ja Aphanizomenon-syanobakteereista tiedetään varsin paljon, on molekyylimenetelmiin pohjautuva syanobakteeritutkimus ohittanut Itämeren Anabaena-suvun monelta osin. Tämän työn tarkoituksena oli syventää käsitystämme Itämeren Anabaena-syanobakteerista, sen mahdollisesta myrkyllisyydestä, geneettisestä monimuotoisuudesta ja fylogeneettisista sukulaisuussuhteista. Tässä työssä eristettiin 49 planktista Anabaena-kantaa, joista viisi tuottivat mikrokystiinejä. Tämä oli ensimmäinen yksiselitteinen todiste, että Itämeren Anabaena tuottaa maksamyrkyllisiä mikrokystiini-yhdisteitä. Jokainen eristetty myrkyllinen Anabaena-kanta tuotti useita mikrokystiini-variantteja. Lisäksi mikrokystiinejä löydettiin kukintanäytteistä, joissa oli myrkkyä syntetisoivia geenejä sisältäneitä Anabaena-syanobakteereita. Myrkkyjä löydettiin molempina tutkimusvuosina 2003 ja 2004. Myrkkyjen esiintyminen ei siten ollut vain yksittäinen ilmiö. Tässä työssä saimme viitteitä siitä, että maksamyrkyllinen Anabaena-syanobakteeri esiintyisi vähäsuolaisissa vesissä. Tämä riippuvuussuhde jää kuitenkin tulevien tutkimuksien selvitettäväksi. Tässä työssä havaittiin mikrokystiinisyntetaasi-geenien inaktivoituminen Itämeren Anabaena-kannassa ja kukintanäytteissä. Kuvasimme Anabaena-kannan mikrokystiinisyntetaasigeenien sisältä insertioita, jotka hyvin todennäköisesti inaktivoivat myrkyntuoton. Insertion sisältäneeltä kannalta löysimme kuitenkin kaikki mikrokystiinisyntetaasigeenit osoittaen, että geenien olemassaolo ei välttämättä varmista kannan mikrokystiinintuottoa. Mielenkiintoista oli se, että inaktivaation aiheuttavia insertioita löytyi kukintanäytteistä molemmilta tutkimusvuosilta. Vastaavia insertioita ei kuitenkaan löydetty makean veden Anabaena-kannoista tai järvinäytteistä. On yleistä, että syanobakteerikukinnoista löytyy usean syanobakteerisuvun edustajia. Myrkyllisiä sukuja tai lajeja ei voida kuitenkaan erottaa mikroskooppisesti myrkyttömistä. Käsillä olevassa tutkimuksessa kehitettiin molekyylimenetelmä, jolla on mahdollista määrittää kukinnan mahdollisesti maksamyrkylliset syanobakteerisuvut. Tätä menetelmää sovellettiin Itämeren kukintojen tutkimiseen. Itämeren pintavesistä ja ranta-alueiden pohjasta eristetyt Anabaena-kannat osoittautuivat geneettisesti monimuotoisiksi. Tämä Anabaena-syanobakteerien geneettinen monimuotoisuus vahvistettiin monistamalla geenejä suoraan kukintanäytteistä ilman kantojen eristystä. Makeiden vesien ja Itämeren Anabaena-kannat ovat geneettisesti hyvin samankaltaisia. Geneettisissä vertailuissa kävi kuitenkin ilmi, että pohjassa elävien Anabaena-kantojen geneettinen monimuotoisuus oli suurempaa kuin pintavesistä eristettyjen kantojen. Itämeren Anabaena-kantojen sekvenssit muodostivat omia ryhmiä sukupuun sisällä, jolloin on mahdollista, että nämä edustavat Itämeren omia Anabaena-ekotyyppejä. Tämä tutkimus oli ensimmäinen, jossa uusin molekyylimenetelmin systemaattisesti selvitettiin Itämeren Anabaena-syanobakteerin geneettistä populaatiorakennetta, fylogeniaa ja myrkyntuottoa. Tulevaisuudessa monitorointitutkimuksissa on otettava huomioon myös Itämeren Anabaena-syanobakteerin mahdollinen maksamyrkyntuotto – erityisesti vähäsuolaisemmilla rannikkovesillä.
Resumo:
The life cycle and genetic diversity of the red alga Furcellaria lumbricalis (Hudson) Lamouroux were investigated in 15 populations in northern Europe. The occurrence of different life cycle phases and seasonality of reproduction were studied in four brackish populations in the northern Baltic Sea. Furthermore, a new method, based on genome screening with ISSR markers combined with a restriction-ligation method, was developed to discover microsatellite markers for population genetic analyses. The mitochondrial DNA cox2-3 spacer sequence and four microsatellite markers were used to examine the genetic diversity and differentiation of red algal populations in northern Europe. In addition, clonality and small-scale genetic structure of one Irish and four Baltic Sea populations were studied with microsatellite markers. It was discovered that at the low salinities of the northern Baltic Sea, only tetrasporophytes and males were present in the populations of F. lumbricalis and that winter was the main season for tetrasporangial production. Furthermore, the population occurring at the lowest salinity (3.6 practical salinity units, psu) did not produce spores. The size of the tetraspores was smaller in the Baltic Sea populations than that in the Irish population, and there were more deformed spores in the Baltic Sea populations than in the Irish populations. Studies with microsatellite markers indicated that clonality is a common phenomenon in the Baltic Sea populations of F. lumbricalis, although the proportion of clonal individuals varied among populations. Some genetic divergence occurred within locations both in Ireland and in the northern Baltic Sea. Even though no carpogonia were detected in the field samples during the study, the microsatellite data indicated that sexual reproduction occurs at least occasionally in the northern Baltic Sea. The genetic diversity of F. lumbricalis was highest in Brittany, France. Since no variation was discovered in the mtDNA cox2-3 spacer sequence, which is generally regarded as an informative phylogeographic marker in red algae, it can be assumed that the studied populations probably share the same origin.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.
Resumo:
Human actions cause destruction and fragmentation of natural habitats, predisposing populations to loss of genetic diversity and inbreeding, which may further decrease their fitness and survival. Understanding these processes is a main concern in conservation genetics. Yet data from natural populations is scarce, particularly on invertebrates, owing to difficulties in measuring both fitness and inbreeding in the wild. Ants are social insects, and a prime example of an ecologically important group for which the effects of inbreeding remain largely unstudied. Social insects serve key roles in all terrestrial ecosystems, and the division of labor between the females in the colonies queens reproduce, workers tend to the developing brood probably is central to their ecological success. Sociality also has important implications for the effects of inbreeding. Despite their relative abundance, the effective population sizes of social insects tend to be small, owing to the low numbers of reproductive individuals relative to the numbers of sterile workers. This may subject social insects to loss of genetic diversity and subsequent inbreeding depression. Moreover, both the workers and queens can be inbred, with different and possibly multiplicative consequences. The aim of this study was to investigate causes and consequences of inbreeding in a natural population of ants. I used a combination of long-term field and genetic data from colonies of the narrow-headed ant Formica exsecta to examine dispersal, mating behavior and the occurrence of inbreeding, and its consequences on individual and colony traits. Mating in this species takes place in nuptial flights that have been assumed to be population-wide and panmictic. My results, however, show that dispersal is local, with queens establishing new colonies as close as 60 meters from their natal colony. Even though actual sib-mating was rare, individuals from different but related colonies pair, which causes the population to be inbred. Furthermore, multiple mates of queens were related to each other, which also indicates localized mating flights. Hence, known mechanisms of inbreeding avoidance, dispersal and multiple mating, were not effective in this population, as neither reduced inbreeding level of the future colony. Inbreeding had negative consequences both at the individual and colony level. A queen that has mated with a related male produces inbred workers, which impairs the colony s reproductive success. The inbred colonies were less productive and, specifically, produced fewer new queens, possibly owing to effects of inbreeding on the caste determination of female larvae. A striking finding was that males raised in colonies with inbred workers were smaller, which reflects an effect of the social environment as males, being haploid, cannot be inbred themselves. The queens produced in the inbred colonies, in contrast, were not smaller, but their immune response was up-regulated. Inbreeding had no effect on queen dispersal, but inbred queens had a lower probability of successfully founding a new colony. Ultimately, queens that survived through the colony founding phase had a shorter lifespan. This supports the idea that inbreeding imposes a genetic stress, leading to inbreeding depression on both the queen and the colony level. My results show that inbreeding can have profound consequences on insects in the wild, and that in social species the effects of inbreeding may be multiplicative and mediated through the diversity of the social environment, as well as the genetic makeup of the individuals themselves. This emphasizes the need to take into account all levels of organization when assessing the effects of genetic diversity in social animals.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Kohonneiden kolesterolipitoisuuksien alentamisessa käytettävien statiinien hyödyt sydän- ja verisuonisairauksien estossa on vahvasti osoitettu ja niiden käyttö on niin Suomessa kuin muuallakin maailmassa kasvanut voimakkaasti – Suomessa statiininkäyttäjiä on noin 600 000. Statiinilääkitys on pitkäaikaisessakin käytössä melko hyvin siedetty, mutta yleisimpinä haittavaikutuksina voi ilmetä lihasheikkoutta, -kipua ja -kramppeja, jotka voivat edetä jopa henkeä uhkaavaksi lihasvaurioksi. Lihashaittariski suurenee suhteessa statiiniannokseen ja plasman statiinipitoisuuksiin. Statiinien plasmapitoisuuksissa, tehossa ja haittavaikutusten ilmenemisessä on suuria potilaskohtaisia eroja. SLCO1B1-geenin koodaama OATP1B1-kuljetusproteiini kuljettaa monia elimistön omia aineita ja lääkeaineita verenkierrosta solukalvon läpi maksasoluun, mm. statiineja, joiden kolesterolia alentava vaikutus ja poistuminen elimistöstä tapahtuvat pääosin maksassa. Erään SLCO1B1-geenin nukleotidimuutoksen (c.521T>C) tiedetään heikentävän OATP1B1:n kuljetustehoa. Tässä väitöskirjatyössä selvitettiin SLCO1B1-geenin perinnöllistä muuntelua suomalaisilla ja eri väestöissä maailmanlaajuisesti. Lisäksi selvitettiin SLCO1B1:n muunnosten vaikutusta eri statiinien pitoisuuksiin (farmakokinetiikka) ja vaikutuksiin (farmakodynamiikka) sekä kolesteroliaineenvaihduntaan. Näihin tutkimuksiin valittiin SLCO1B1-genotyypin perusteella terveitä vapaaehtoisia koehenkilöitä, joille annettiin eri päivinä kerta-annos kutakin tutkittavaa statiinia: fluvastatiinia, pravastatiinia, simvastatiinia, rosuvastatiinia ja atorvastatiinia. Verinäytteistä määritettiin plasman statiinien ja niiden aineenvaihduntatuotteiden sekä kolesterolin ja sen muodostumista ja imeytymistä kuvaavien merkkiaineiden pitoisuuksia. Toiminnallisesti merkittävien SLCO1B1-geenimuunnosten esiintyvyydessä todettiin suuria eroja eri väestöjen välillä. Suomalaisilla SLCO1B1 c.521TC-genotyypin (geenimuunnos toisessa vastinkromosomissa) esiintyvyys oli noin 32 % ja SLCO1B1 c.521CC-genotyypin (geenimuunnos molemmissa vastinkromosomeissa) esiintyvyys noin 4 %. Globaalisti geenimuunnosten esiintyvyys korreloi maapallon leveyspiirien kanssa siten, että matalaan transportteriaktiivisuuteen johtavat muunnokset olivat yleisimpiä pohjoisessa ja korkeaan aktiivisuuteen johtavat päiväntasaajan lähellä asuvilla väestöillä. SLCO1B1-genotyypillä oli merkittävä vaikutus statiinien plasmapitoisuksiin lukuun ottamatta fluvastatiinia. Simvastatiinihapon plasmapitoisuudet olivat keskimäärin 220 %, atorvastatiinin 140 %, pravastatiinin 90 % ja rosuvastatiinin 70 % suuremmat c.521CC-genotyypin omaavilla koehenkilöillä verrattuna normaalin c.521TT-genotyypin omaaviin. Genotyypillä ei ollut merkittävää vaikutusta minkään statiinin tehoon tässä kerta-annostutkimuksessa, mutta geenimuunnoksen kantajilla perustason kolesterolisynteesinopeus oli suurempi. Tulokset osoittavat, että SLCO1B1 c.521T>C geenimuunnos on varsin yleinen suomalaisilla ja muilla ei-afrikkalaisilla väestöillä. Tämä geenimuunnos voi altistaa erityisesti simvastatiinin, mutta myös atorvastatiinin, pravastatiinin ja rosuvastatiinin, aiheuttamille lihashaitoille suurentamalla niiden plasmapitoisuuksia. SLCO1B1:n geenimuunnoksen testaamista voidaan tulevaisuudessa käyttää apuna valittaessa sopivaa statiinilääkitystä ja -annosta potilaalle, ja näin parantaa sekä statiinihoidon turvallisuutta että tehoa.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.
Resumo:
The reported incidence of human campylobacteriosis in Finland is higher than in most other European countries. A high annual percentage of sporadic infections is of foreign origin, although a notable proportion of summer infections is domestically acquired. While chickens appear to be a major source of campylobacters for humans in most countries, the prevalence of campylobacters is very low in chicken slaughter batches in Finland. Data on other potential animal reservoirs of human pathogenic campylobacters in Finland are scarce. Consequently, this study aimed to investigate the status of Finnish cattle as a potential source of thermophilic Campylobacter spp. and antibiotic-resistant Campylobacter jejuni for human sporadic campylobacter infections of domestic origin. A survey of the prevalence of thermophilic Campylobacter spp. in Finnish cattle studied bovine rectal faecal samples (n=952) and carcass surface samples (n=948) from twelve Finnish slaughterhouses from January to December 2003. The total prevalence of Campylobacter spp. in faecal samples was 31.1%, and in carcass samples 3.5%. Campylobacter jejuni, the most common species, was present in 19.5% of faecal samples and in 3.1% of carcasses. In addition to thermophilic Campylobacter spp., C. hyointestinalis ssp. hyointestinalis was present in bovine samples. The prevalence of campylobacters was higher among beef cattle than among dairy cattle. Using the enrichment method, the number of positive faecal samples was 7.5 times higher than that obtained by direct plating. The predominant serotypes of faecal C. jejuni, determined by serotyping with a set of 25 commercial antisera for heat-stable antigens (Penner), were Pen2 and Pen4-complex, which covered 52% of the samples. Genotyping with pulsed-field gel electrophoresis (PFGE) using SmaI restriction yielded a high diversity of C. jejuni subtypes in cattle. Determining the minimum inhibitory concentrations of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline among bovine C. jejuni isolates using a commercial broth microdilution method yielded 9% of isolates resistant to at least one of the antimicrobials examined. No multiresistant isolates were found among the bovine C. jejuni strains. The study of the shedding patterns of Campylobacter spp. among three Finnish dairy cattle herds included the examination of fresh faecal samples and tank milk samples taken five times, as well as samples from drinking troughs taken once during the one-year study. The semiquantitative enrichment method detected C. jejuni in 169 of the 340 faecal samples, mostly at low levels. In addition, C. jejuni was present in one drinking trough sample. The prevalence between herds and sampling occasions varied widely. PFGE, using SmaI as restriction enzyme, identified only a few subtypes in each herd. In two 2 of the herds, two subtypes persisted throughout the sampling. Individual animals presented various shedding patterns during the study. Comparison of C. jejuni isolates from humans, chickens and cattle included the design of primers for four new genetic markers selected from completely sequenced C. jejuni genomes 81-176, RM1221 and NCTC 11168, and the PCR examination of domestic human isolates from southern Finland in 1996, 2002 and 2003 (n=309), chicken isolates from 2003, 2006 and 2007 (n=205), and bovine isolates from 2003 (n=131). The results revealed that bovine isolates differed significantly from human and chicken isolates. In particular, the - glutamyl transpeptidase gene was uncommon among bovine isolates. The PFGE genotyping of C. jejuni isolates, using SmaI and KpnI restriction enzymes, included a geographically representative collection of isolates from domestic sporadic human infections, chicken slaughter batches, and cattle faeces and carcasses during the seasonal peak of campylobacteriosis in the summer of 2003. The study determined that 55.4% of human isolates were indistinguishable from those of chickens and cattle. Temporal association between isolates from humans and chickens was possible in 31.4% of human infections. Approximately 19% of the human infections may have been associated with cattle. However, isolates from bovine carcasses and human cases represented different PFGE subtypes. In conclusion, this study suggests that Finnish cattle is a notable reservoir of C. jejuni, the most important Campylobacter sp. in human enteric infections. Although the concentration of these organisms in bovine faeces appeared to be low, excretion can be persistent. The genetic diversity and presence or absence of marker genes support previous suggestions of host-adapted C. jejuni strains, and may indicate variations in virulence between strains from different hosts. In addition to chickens, Finnish cattle appeared to be an important reservoir and possible source of C. jejuni in domestic sporadic human infections. However, sources of campylobacters may differ between rural and urban areas in Finland, and in general, the transmission of C. jejuni of bovine origin probably occurs via other routes than food.