21 resultados para Lateral pterygoid muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk is obvious for soft tissue complications after operative treatment of the Achilles tendon, calcaneal bone or after ankle arthroplasty. Such complications after malleolar fractures are, however, seldom seen. The reason behind these complications is that the soft tissue in this region is tight and does not allow much tension to the wound area after surgery. Furthermore the area of operation may be damaged by swelling after the injury, or can be affected by peripheral vascular disease. While complications in this area are unavoidable, they can be diminished. This study attempts to highlight the possible predisposing factors leading to complications in these operations and on the other hand, to determine the solutions to solve soft tissue problems in this region. The study consists of five papers. The first article is a reprint on the soft tissue reconstruction of 25 patients after their complicated Achilles tendon surgeries were analysed. The second study reviews a series of 126 patients after having undergone an operative treatment of calcaneal bone fractures and analyses the complications and possible reasons behind them. The third part analyses a series of corrections of 35 soft tissue complications after calcaneal fracture operations. The fourth part reviews a series of 7 patients who had undergone complicated ankle arthroplasties. The last article presents a series of post operative lateral defects of the ankle treated with a less frequently used distally based peroneus brevis muscle flap and analyses the results. What can be conducted from these studies is that in general, the results after the correction of even severe soft tissue complications in the ankle region are good. For the small defects around the Achilles tendon, the local flaps are useful, but the larger defects are best treated with a free flap. We found that a long delay from trauma to surgery and a long operating time were predisposing factors that lead to soft tissue complications after operatively treated calcaneal bone fractures. The more severe the injury, the greater the risk for wound complication. Surprisingly, the long-term results after infected calcaneal osteosyntheses were acceptable and the calcaneal bone seems to tolerate chronic infections very well if the soft tissue is reconstructed successfully. Behind the complicated ankle arthroplasties, unexpectedly high number of cases experiencing arteriosclerosis of the lower extremity was found. These complications lead to ankle fusion but can be solved with a free flap if the vascularity is intact or can be reconstructed. For this reason a vascular examination of the lower extremity arteries of the patients going to ankle arthroplasty is strongly recommended. Moreover postoperative lateral malleolar wound infections which typically create lateral ankle defects can successfully be treated with a peroneus brevis muscle flap covered with a free skin graft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anterior cruciate ligament (ACL) tear is a common sports injury of the knee. Arthroscopic reconstruction using autogenous graft material is widely used for patients with ACL instability. The grafts most commonly used are the patellar and the hamstring tendons, by various fixation techniques. Although clinical evaluation and conventional radiography are routinely used in follow-up after ACL surgery, magnetic resonance imaging (MRI) plays an important role in the diagnosis of complications after ACL surgery. The aim of this thesis was to study the clinical outcome of patellar and hamstring tendon ACL reconstruction techniques. In addition, the postoperative appearance of the ACL graft was evaluated using several MRI sequences. Of the 175 patients who underwent an arthroscopically assisted ACL reconstruction, 99 patients were randomized into patellar tendon (n=51) or hamstring tendon (n=48) groups. In addition, 62 patients with hamstring graft ACL reconstruction were randomized into either cross-pin (n=31) or interference screw (n=31) fixation groups. Follow-up evaluation determined knee laxity, isokinetic muscle performance and several knee scores. Lateral and anteroposterior view radiographs were obtained. Several MRI sequences were obtained with a 1.5-T imager. The appearance and enhancement pattern of the graft and periligamentous tissue, and the location of bone tunnels were evaluated. After MRI, arthroscopy was performed on 14 symptomatic knees. The results revealed no significant differences in the 2-year outcome between the groups. In the hamstring tendon group, the average femoral and tibial bone tunnel diameter increased during 2 years follow-up by 33% and 23%, respectively. In the asymptomatic knees, the graft showed homogeneous and low signal intensity with periligamentous streaks of intermediate signal intensity on T2-weighted MR images. In the symptomatic knees, arthroscopy revealed 12 abnormal grafts and two meniscal tears, each with an intact graft. Among 3 lax grafts visible on arthroscopy, MRI showed an intact graft and improper bone tunnel placement. For diagnosing graft failure, all MRI findings combined gave a specificity of 90% and a sensitivity of 81%. In conclusion, all techniques appeared to improve patients' performance, and were therefore considered as good choices for ACL reconstruction. In follow-up, MRI permits direct evaluation of the ACL graft, the bone tunnels, and additional disorders of the knee. Bone tunnel enlargement and periligamentous tissue showing contrast enhancement were non-specific MRI findings that did not signify ACL deficiency. With an intact graft and optimal femoral bone tunnel placement, graft deficiency is unlikely, and the MRI examination should be carefully scrutinized for possible other causes for the patients symptoms.