29 resultados para LIPID PROFILE
Resumo:
Diet high in dairy products is inversely associated with body mass index, risk of metabolic syndrome and prevalence of type 2 diabetes in several populations. Also a number of intervention studies support the role of increased dairy intake in the prevention and treatment of obesity. Dairy calcium has been suggested to account for the effect of dairy on body weight, but it has been repeatedly shown that the effect of dairy is superior to the effect of supplemental calcium. Dairy proteins are postulated to either enhance the effect of calcium or have an independent effect on body weight, but studies in the area are scarce. The aim of this study was to evaluate the potential of dairy proteins and calcium in the prevention and treatment of diet-induced obesity in C57Bl/6J mice. The effect of dairy proteins and calcium on the liver and adipose tissue was also investigated in order to characterise the potential mechanisms explaining the reduction of risk for metabolic syndrome and type 2 diabetes. A high-calcium diet (1.8%) in combination with dietary whey protein inhibited body weight and fat gain and accelerated body weight and fat loss in high-fat-fed C57Bl/6J mice during long-term studies of 14 to 21 weeks. α-lactalbumin, one of the major whey proteins, was the most effective whey protein fraction showing significantly accelerated weight and fat loss during energy restriction and reduced the amount of visceral fat gain during ad libitum feeding after weight loss. The microarray data suggest sensitisation of insulin signalling in the adipose tissue as a result of a calcium-rich whey protein diet. Lipidomic analysis revealed that weight loss on whey protein-based high-calcium diet was characterised by significant decreases in diabetogenic diacylglycerols and lipotoxic ceramide species. The calcium supplementation led to a small, but statistically significant decrease in fat absorption independent of the protein source of the diet. This augments, but does not fully explain the effects of the studied diets on body weight. A whey protein-containing high-calcium diet had a protective effect against a high-fat diet-induced decline of β3 adrenergic receptor expression in adipose tissue. In addition, a high-calcium diet with whey protein increased the adipose tissue leptin expression which is decreased in this obesity-prone mouse strain. These changes are likely to contribute to the inhibition of weight gain. The potential sensitisation of insulin signalling in adipose tissue together with the less lipotoxic and diabetogenic hepatic lipid profile suggest a novel mechanistic link to explain why increased dairy intake is associated with a lower prevalence of metabolic syndrome and type 2 diabetes in epidemiological studies. Taken together, the intake of a high-calcium diet with dairy proteins has a body weight lowering effect in high-fat-fed C57Bl/6J mice. High-calcium diets containing whey protein prevent weight gain and enhance weight loss, α-lactalbumin being the most effective whey protein fraction. Whey proteins and calcium have also beneficial effects on hepatic lipid profile and adipose tissue gene expression, which suggest a novel mechanistic link to explain the epidemiological findings on dairy intake and metabolic syndrome. The clinical relevance of these findings and the precise mechanisms of action remain an intriguing field of future research.
Resumo:
More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.
Resumo:
Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.
Resumo:
Introduction: The pathogenesis of diabetic nephropathy remains a matter of debate, although strong evidence suggests that it results from the interaction between susceptibility genes and the diabetic milieu. The true pathogenetic mechanism remains unknown, but a common denominator of micro- and macrovascular complications may exist. Some have suggested that low-grade inflammation and activation of the innate immune system might play a synergistic role in the pathogenesis of diabetic nephropathy. Aims of the study: The present studies were undertaken to investigate whether low-grade inflammation, mannan-binding lectin (MBL) and α-defensin play a role, together with adiponectin, in patients with type 1 diabetes and diabetic nephropathy. Subjects and methods: This study is part of the ongoing Finnish Diabetic Nephropathy Study (FinnDiane). The first four cross-sectional substudies of this thesis comprised 194 patients with type 1 diabetes divided into three groups (normo-, micro-, and macroalbuminuria) according to their albumin excretion rate (AER). The fifth substudy aimed to determine whether baseline serum adiponectin plays a role in the development and progression of diabetic nephropathy. This follow-up study included 1330 patients with type 1 diabetes and a mean follow-up period of five years. The patients were divided into three groups depending on their AER at baseline. As a measure of low-grade inflammation, highly sensitive CRP (hsCRP) and α-defensin were measured with radio-immunoassay, and interleukin-6 (IL-6) with high- sensitivity enzyme immuno-assay. Mannan-binding lectin and adiponectin were determined with time-resolved immunofluorometric assays. The progression of albuminuria from one stage to the other served as a measure of the progression of diabetic nephropathy. Results: Low-grade inflammatory markers, MBL, adiponectin, and α-defensin were all associated with diabetic nephropathy, whereas MBL, adiponectin, and α-defensin per se were unassociated with low-grade inflammatory markers. AER was the only clinical variable independently associated with hsCRP. AER, HDL-cholesterol and the duration of diabetes were independently associated with IL-6. HbA1c was the only variable independently associated with MBL. The estimated glomerular filtration rate (eGFR), AER, and waist-to-hip ratio were independently associated with adiponectin. Systolic blood pressure, HDL-cholesterol, total cholesterol, age, and eGFR were all independently associated with α-defensin. In patients with macroalbuminuria, progression to end-stage renal disease (ESRD) was associated with higher baseline adiponectin concentrations. Discussion and conclusions: Low-grade inflammation, MBL, adiponectin, and defensin were all associated with diabetic nephropathy in these cross-sectional studies. In contrast however, MBL, adiponectin, and defensin were not associated with low-grade inflammatory markers per se. Nor was defensin associated with MBL, which may suggest that these different players function in a coordinated fashion during the deleterious process of diabetic nephropathy. The question of what causes low-grade inflammation in patients with type 1 diabetes and diabetic nephropathy, however, remains unanswered. We could observe in our study that glycemic control, an atherosclerotic lipid profile, and waist-to-hip ratio (WHR) were associated with low-grade inflammation in the univariate analysis, although in the multivariate analysis, only AER, HDL-cholesterol, and the duration of diabetes, as a measure of glycemic load, proved to be independently associated with inflammation. Notably, all these factors are modifiable with changes in lifestyle and/or with a targeted medication. In the follow-up study, elevated serum adiponectin levels at baseline predicted the progression from macroalbuminuria to ESRD independently of renal function at baseline. This observation does not preclude adiponectin as a favorable factor during the process of diabetic nephropathy, since the rise in serum adiponectin concentrations may remain a mechanism by which the body compensates for the demands created by the diabetic milieu.
Resumo:
Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.
Pathophysiological factors of irritable bowel syndrome, and the effects of probiotic supplementation
Resumo:
Gastrointestinal symptoms and impaired quality of life caused by irritable bowel syndrome (IBS) affect up to 20% of the adult population worldwide. The exact aetiology and pathophysiology of IBS are incompletely understood. Clinical studies suggest that supplementation with certain probiotics may be beneficial in IBS, but there is not enough evidence to make general recommendations. The aim of this thesis was to investigate microbiota- and mucosa-associated pathophysiological factors of IBS, and to evaluate the long-term effects of multispecies probiotic supplementation on symptoms, quality of life, intestinal microbiota and systemic inflammatory markers in IBS. The intestinal microbiota composition in IBS patients and healthy control subjects was analysed by quantitative polymerase chain reaction (qPCR). Significantly lower counts for the Clostridium coccoides and the Bifidobacterium catenulatum groups were found in IBS compared to controls. Quantitative differences also appeared in subgroup analysis based on the predominant bowel habit: diarrhoea patients harboured significantly lower numbers of Lactobacillus spp. than the constipation-predominant patients, while higher counts for Veillonella spp. were detected in constipation-predominant patients compared to healthy controls. Analysis of mucosal biopsies by a metabolomic approach revealed multiple differences between patients and controls. The most prominent finding was an upregulation of specific lipid species, principally lysophosphatidylcholines and ceramides, in IBS. The effects of multispecies probiotic supplementation with Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. shermanii JS, and Bifidobacterium breve Bb99 or Bifidobacterium animalis subsp. lactis Bb12 was evaluated in two, randomised, double-blind, placebo-controlled trials. Compared to placebo, the probiotic supplementation significantly reduced the total symptoms of IBS. No effects on bowel habit were seen. Health-related quality of life (HRQOL) is reduced in patients with IBS in comparison with the Finnish population on the whole. The probiotic supplementation improved one IBS-specific domain of quality of life (bowel symptoms), whereas no other effects on HRQOL were seen. The probiotics had no major effects on the predominant microbiota as measured by qPCR, but a microarray-based analysis suggested that the probiotic consumption stabilised the microbiota. No effects on serum sensitive-CRP or cytokines were detected. In conclusion, alterations in the microbiota composition and in the mucosal metabolite profile are potential pathophysiological factors of IBS. Multispecies probiotic supplementation alleviates the gastrointestinal symptoms of IBS, and improves the bowel symptoms domain of HRQOL. Probiotic supplementation in IBS is associated with a stabilisation of microbiota, but it does not influence systemic inflammatory markers.
Resumo:
Cardiovascular diseases, which presently are considered inflammatory diseases, affect millions of people worldwide. Chronic infections may contribute to the systemic inflammation suggested to increase the risk for cardiovascular diseases. Such chronic infections are periodontitis and Chlamydia pneumoniae infection. They are highly prevalent as approximately 10% of adult population and 30% of people over 50 years old are affected by severe periodontitis and 70-80% of elderly people are seropositive for C. pneumoniae. Our general aim was to investigate the role of infection and inflammation in atherosclerosis both in animal and human studies. We aimed to determine how the two pathogens alter the atherosclerosis-associated parameters, and how they affect the liver inflammation and lipid composition. Furthermore, we evaluated the association between matrix metalloproteinase-8 (MMP-8), a proteinase playing a major role in inflammation, and the future cardiovascular diseases (CVD) events in a population-based cohort. For the animal experiments, we used atherosclerosis-susceptible apolipoprotein E deficient (apoE-/-) mice. They were kept in germ free conditions and fed with a normal chow diet. The bacteria were administered either intravenously (A. actinomycetemcomitans) or intranasally (C. pneumoniae). Several factors were determined from serum as well as from aortic and hepatic tissues. We also determined how cholesterol efflux, a major event in the removal of excess cholesterol from the tissues, and endothelial function were affected by these pathogens. In the human study, serum MMP-8 and its tissue inhibitor (TIMP-1) concentrations were measured and their associations during the follow-up time of 10 years with CVD events were determined. An infection with A. actinomycetemcomitans increased concentrations of inflammatory mediators, MMP production, and cholesterol deposit in macrophages, decreased lipoprotein particle size, and induced liver inflammation. C. pneumoniae infection also elicited an inflammatory response and endothelial dysfunction, as well as induced liver inflammation, microvesicular appearance and altered fatty acid profile. In the population-based cohort, men with increased serum MMP-8 concentration together with subclinical atherosclerosis (carotid artery intima media thickness > 1mm) had a three-fold increased risk for CVD death during the follow-up. The results show that infections with A. actinomycetemcomitans and C. pneumoniae induce proatherogenic changes, as well as affect the liver. These data therefore support the concept that common infections have systemic effects and could be considered as cardiovascular risk factors. Furthermore, our data indicate that, as an independent predictor of fatal CVD event, serum MMP-8 could have a clinical significance in diagnosing cardiovascular diseases.
Resumo:
The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.
Lipid hydroperoxides : Effects of tocopherols and ascorbic acid on their formation and decomposition