20 resultados para Hormonal contraceptives
Resumo:
In humans, well-replicated and robust sex differences in cognitive functions exist for handedness and mental rotation ability. A common characteristic in human cognitive functions is the lateralization of language functions. Handedness is a common measure of laterality and is related to language lateralization. The prevalence of left-handedness is higher in males than in females, the male to female ratio being about 1.2. Among cognitive abilities, the largest sex difference is evident in the Vandenberg and Kuse Mental Rotation Test (MRT), which requires the ability to rotate objects in mental space. On average, males achieve scores one standard deviation higher than females in the MRT. The present thesis investigated the origins of the sex differences in laterality and spatial ability as represented by handedness and mental rotation ability, respectively. Two population-based Finnish twin cohorts were utilized in this study. Handedness was studied in 25 810 twins and 4068 singletons born before 1958 from the Older Finnish Twin Cohort, and in 4736 twins born in 1983-87 from the FinnTwin12. MRT was studied in a sub-sample of 804 young adult participants from the FinnTwin12 sample. The main findings of this study were: 1) the prevalence of left-handedness was higher among males than among females in both singletons and in twins; 2) males had significantly higher scores than females in MRT; 3) about one quarter of the variance in handedness and about half of the variance in MRT was explained by genetic effects, whereas the remainder of the variance in these traits was explained by environmental effects unique to each individual. The magnitude of the genetic effects was similar in both sexes; 4) left-handedness was significantly less common in female co-twins of a male than in female co-twins of a female, and female co-twins of a male scored significantly higher than did female co-twins of a female in the Mental Rotation Test. This dissertation discusses whether these differences between females from opposite- and same-sex twin pairs are due to the prenatal transfer of testosterone from the male fetus in females with male co-twins or whether they arise from postnatal socialization effects.
Resumo:
Premature birth and associated small body size are known to affect health over the life course. Moreover, compelling evidence suggests that birth size throughout its whole range of variation is inversely associated with risk for cardiovascular disease and type 2 diabetes in subsequent life. To explain these findings, the Developmental Origins of Health and Disease (DOHaD) model has been introduced. Within this framework, restricted physical growth is, to a large extent, considered either a product of harmful environmental influences, such as suboptimal nutrition and alterations in the foetal hormonal milieu, or an adaptive reaction to the environment. Whether inverse associations exist between body size at birth and psychological vulnerability factors for mental disorders is poorly known. Thus, the aim of this thesis was to study in three large prospective cohorts whether prenatal and postnatal physical growth, across the whole range of variation, is associated with subsequent temperament/personality traits and psychological symptoms that are considered vulnerability factors for mental disorders. Weight and length at birth in full term infants showed quadratic associations with the temperamental trait of harm avoidance (Study I). The highest scores were characteristic of the smallest individuals, followed by the heaviest/longest. Linear associations between birth size and psychological outcomes were found such that lower weight and thinness at birth predicted more pronounced trait anxiety in late adulthood (Study II); lower birth weight, placental size, and head circumference at 12 months predicted a more pronounced positive schitzotypal trait in women (Study III); and thinness and smaller head circumference at birth associated with symptoms of attention-deficit hyperactivity disorder (ADHD) in children who were born at term (Study IV). These associations occured across the whole variation in birth size and after adjusting for several confounders. With respect to growth after birth, individuals with high trait anxiety scores in late adulthood were lighter in weight and thinner in infancy, and gained weight more rapidly between 7 and 11 years of age, but weighed less and were shorter in late adulthood in relation to weight and height measured at 11 years of age (Study II). These results suggest that a suboptimal prenatal environment reflected in smaller birth size may affect a variety of psychological vulnerability factors for mental disorders, such as the temperamental trait of harm avoidance, trait anxiety, schizotypal traits, and symptoms of ADHD. The smaller the birth size across the whole range of variation, the more pronounced were these psychological vulnerability factors. Moreover, some of these outcomes, such as trait anxiety, were also predicted by patterns of growth after birth. The findings are concordant with the DOHaD model, and emphasise the importance of prenatal factors in the aetiology of not only mental disorders but also their psychological vulnerability factors.
Resumo:
Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.
Resumo:
Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.
Resumo:
The low solubility of iron (Fe) depresses plant growth in calcareous soils. In order to improve Fe availability, calcareous soils are treated with synthetic ligands, such as ethylenediaminetetraacetic acid (EDTA) and ethylenediimi-nobis(2-hydroxyphenyl)acetic acid (EDDHA). However, high expenses may hinder their use (EDDHA), and the recalcitrance of EDTA against biodegra-dation may increase the potential of cadmium (Cd) and lead (Pb) leaching. This study evaluated the ability of biodegradable ligands, i.e. different stereo-isomers of ethylenediaminedisuccinic acid (EDDS), to provide Fe for lettuce (Lactuca sativa L.) and ryegrass (Lolium perenne cv. Prego), their effects on uptake of other elements and solubility in soils and their subsequent effects on the activity of oxygen-scavenging enzymes in lettuce. Both EDTA and EDDHA were used as reference ligands. In unlimed and limed quartz sand both FeEDDS(S,S) and a mixture of stereo-isomers of FeEDDS (25% [S,S]-EDDS, 25% [R,R]-EDDS and 50% [S,R]/[R,S]-EDDS), FeEDDS(mix), were as efficient as FeEDTA and FeEDDHA in providing lettuce with Fe. However, in calcareous soils only FeEDDS(mix) was comparable to FeEDDHA when Fe was applied twice a week to mimic drip irrigation. The Fe deficiency increased the manganese (Mn) concentration in lettuce in both acidic and alkaline growth media, whereas Fe chelates depressed it. The same was observed with zinc (Zn) and copper (Cu) in acidic growth media. EDDHA probably affected the hormonal status of lettuce as well and thus depressed the uptake of Zn and Mn even more. The nutrient concentrations of ryegrass were only slightly affected by the Fe availability. After Fe chelate splitting in calcareous soils, EDDS and EDTA increased the solubility of Zn and Cu most, but only the Zn concentration was increased in lettuce. The availability of Fe increased the activity of oxygen-scavenging enzymes (ascorbate peroxidase, guaiacol peroxidase, catalase). The activity of Cu/ZnSOD (Cu/Zn superoxide dismutase) and MnSOD in lettuce leaves followed the concentrations of Zn and Mn. In acidic quartz sand low avail-ability of Fe increased the cobalt (Co) and nickel (Ni) concentrations in let-tuce, but Fe chelates decreased them. EDTA increased the solubility of Cd and Pb in calcareous soils, but not their uptake. The biodegradation of EDDS was not affected by the complexed element, and [S,S]-EDDS was biodegraded within 28 days in calcareous soils. EDDS(mix) was more recalcitrant, and after 56 days of incubation water-soluble elements (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) corresponded to 10% of the added EDDS(mix) concentration.
Resumo:
Vuodenajat rytmittävät monivuotisten kasvien elämää pohjoisella pallonpuoliskolla, jolla varmin merkki lähestyvästä talvikaudesta on asteittain lyhenevä päivänpituus. Kun päivänpituus on lyhentynyt tiettyyn raja-arvoon saakka, kasvu hiipuu ja kasvin kehityksessä tapahtuu suuria muutoksia. Väitöskirjatyössäni tutkittiin mekanismeja, jotka liittyvät pituuskasvun päättymiseen, silmujen lepotilan kehittymiseen ja kärkisilmun muodostumiseen hybridihaavan ja koivuntaimilla lyhyen päivänpituuden seurauksena kasvihuoneolosuhteissa. Vain lepotilaiset silmut selviytyvät luonnossa ankaran talvikauden yli, joten etenkin lepotilan kehittymisen tutkiminen on keskeistä pyrittäessä selvittämään monivuotisille kasveille tyypillisen kasvutavan mekanismeja. Jo pitkään on tiedetty, että täysikasvuiset lehdet vastaanottavat tiedon päivänpituudesta ja lähettävät signaaleja varren johtojänteissä ylöspäin kohti kasvin kärkiosaa. Sen sijaan varren kärjen ja kärkikasvupisteen roolia lepotilan kehittymisessä on selvitetty vain vähän. Kuitenkin juuri kärkikasvupisteen selviytyminen vuodesta toiseen on tärkeää, koska sen jakautumiskykyiset solukot tuottavat kasvin maanpäälliset osat. Tässä työssä tehdyissä varttamiskokeissa osoitettiin, että varren kärki ei ainoastaan vastaanota signaaleja lehdistä ja ajoita toimintaansa niiden mukaan, vaan myös kärjellä itsellään on aktiivinen rooli lepotilan kehittymisessä. Erityisesti kiinnitettiin huomiota kärkikasvupisteen eri alueiden, ns. apikaalimeristeemin ja rib-meristeemin erilaisiin tehtäviin ja pääteltiin, että molemmat vaikuttavat lepotilan kehittymiseen. Kokeissa käytettiin normaalien hybridihaapojen lisäksi siirtogeenisiä hybridihaapoja, jotka eivät lopeta kasvuaan lyhyt päivä –olosuhteissa. Siirtogeeniset hybridihaavat ilmensivät voimakkaasti fytokromi A -nimistä valon vastaanottajamolekyyliä rib-meristeemin alueella, mikä saattoi osaltaan vaikuttaa poikkeavaan pituuskasvukäyttäytymiseen. Myös useiden lepotilan kehittymiseen liittyvien geenien ilmenemisessä havaittiin poikkeavuuksia verrattuna ei-siirtogeenisiin kontrolleihin, joiden silmuissa kehittyi lepotila lyhyt päivä –altistuksen seurauksena. Väitöskirjatyössäni havaittiin, että myös kaasumainen kasvihormoni etyleeni toimii viestinvälittäjänä silmujen lepotilan kehittymisessä ja vaikuttaa etenkin lepotilan oikeaan ajoittumiseen. Etyleenillä huomattiin olevan määräävä rooli päätesilmun muodostumisessa: siirtogeeniset koivut, jotka eivät aisti etyleeniä, eivät muodostaneet päätesilmua. Silti siirtogeeniset koivut vaipuivat lepotilaan, joskin myöhemmin kuin ei-siirtogeeniset kontrollit. Tämän perusteella todettiin, että lepotilan ja päätesilmun kehittyminen ovat erillisiä kehitystapahtumia, vaikka ne saattavatkin ajoittua osaksi päällekkäin.
Resumo:
The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Resumo:
Secondary growth of plants is of pivotal importance in terrestrial ecosystems, providing a significant carbon sink in the form of wood. As plant biomass accumulation results largely from the cambial growth, it is surprising that quite little is known about the hormonal or genetic control of this important process in any plant species. The central aim of my thesis studies was to explore the function of cytokinin in the regulation of cambial development. Since their discovery as regulators of plant cell divisions, cytokinins have been assumed to participate in the control of cambial development. Evidence for this action was deduced from hormone treatment experiments, where exogenously applied cytokinin was shown to enhance cambial cell divisions in diverse plant organs and species. In my thesis work, the conservation of cytokinin signalling and homeostasis genes between a herbaceous plant, Arabidopsis, and a hardwood tree species, Populus trichocarpa. Presumably reflecting the ancient origin of cytokinin signalling system, the Populus genome contains orthologs for all Arabidopsis cytokinin signalling and homeostasis genes. Thus, genes belonging to five main families of isopentenyl transferases (IPTs), cytokinin oxidases (CKXs), two-component receptors, histidine containing phosphotransmitters (HPts) and response regulators (RRs) were identified from the Populus genome. Three subfamilies associated with cytokinin signal transduction, the CKI1-like family of two-component receptors, the AHP4-like HPts, and the ARR22-like atypical RRs, were significantly larger in Populus genome than in Arabidopsis. Potential contribution to the extensive secondary development of Populus by the members of these considerably expanded gene families will be discussed. Representatives of all cytokinin signal transduction elements were expressed in the Populus cambial zone, and most of the expressed genes appeared to be slightly more abundant on the phloem side of the meristem. The abundance of cytokinin related genes in the cambium emphasizes the important role of this hormone in the regulation of the extensive secondary growth characteristic of tree species. The function of the pseudo HPts in primary vascular development was studied in Arabidopsis root vasculature. It was demonstrated that the pseudo HPt AHP6 has a role in locally inhibiting cytokinin signalling in the protoxylem position in the Arabidopsis root, thus enabling differentiation of the protoxylem cell file. The possible role of pseudo HPts in cambial development will be discussed. The expression peak of cytokinin signalling genes in the tree cambial zone strongly indicates that cytokinin has a role in the regulation of this meristem function. To address whether cytokinin signalling is required for cambial activity, transgenic Populus trees with modified cytokinin signalling were produced. These trees were expressing a cytokinin catabolic gene from Arabidopsis, CYTOKININ OXIDASE 2, (AtCKX2) under the promoter of a Betula CYTOKININ RECEPTOR 1 (BpCRE1). The pBpCRE1::CKX2 transgenic Populus trees showed a reduced concentration of a biologically active cytokinin, correlating with their impaired cytokinin response. Furthermore, the radial growth of these trees was compromised, as illustrated by a smaller stem diameter than in wild-type trees of the same height. Moreover, the level of cambial cytokinin signalling was down-regulated in these thin-stemmed trees. The reduced signalling correlated with a decreased number of meristematic cambial cells, implicating cytokinin activity as a direct regulator of cambial cell division activity. Together, the results of my study indicate that cytokinins are major hormonal regulators required for cambial development.
Resumo:
Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.
Resumo:
Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.