38 resultados para Failure Prediction
Resumo:
Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.
Resumo:
Acute respiratory failure (ARF) is the most common type of organ failure leading to the need for intensive care. It is often secondary to acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). ARF, and especially ALI and ARDS, cause increased morbidity, and mortality rates remain high (up to 40%). These disorders are characterised by inflammatory reaction and tissue damage. In some cases, inflammation continues and leads to an overwhelming repair process with ongoing fibrosis, accompanied by organ dysfunction and eventually a loss of function. Measuring the magnitude of the inflammation, and the repair process, would theoretically offer information concerning outcome. Early identification of patients whose disease process is likely to proceed unfavourably, would help clinicians to optimise their treatment. The aim of this study was to evaluate the epidemiology of ARF, its treatment, and outcome in Finland, with special interest in biomarkers, and their value in the prediction of mortality. Altogether, 958 adult patients treated with ventilatory support were prospectively included in this study during an eight week period in 2007 in 25 intensive care units. Plasma aminoterminal pro-brain natriuretic peptide (NT-pro-BNP) was assessed in 602 patients, and plasma cell-free DNA in 580 patients, to evaluate their prognostic value in ARF. Markers of collagen metabolism were studied in longitudinal serum samples in 68 patients in order to evaluate their evolution in ARF and the association to multiple organ dysfunction (MOD). Ventilatory support was used in 39% of all ICU patients. The estimated incidence of ARF was 149.5/100 000 per year. Median tidal volumes used were higher than recommended. Overall mortality at 90 days was 31%. Plasma NT-pro-BNP and cell-free DNA were highly increased in the majority of patients. Both markers were independent predictors of 90-day mortality, but their discriminative power was at most moderate when used separately. The mortality was highest in those patients, in whom both biomarkers were over their separate cut-off values. Thus, combined use of these biomarkers may increase their clinical value in the mortality prediction. The markers of collagen metabolism changed significantly over time in surviving patients. None of these markers did associate with MOD in these patients.
Resumo:
Suun kautta annosteltava kalsiumherkistäjä parantaa sydämen vajaatoimintaan liittyvää pumppausvajetta kokeellisissa sydämen vajaatoimintamalleissa Huolimatta viime vuosikymmenien lääketieteellisestä kehityksestä krooninen sydämen vajaatoiminta on silti edelleen vakava, elämänlaatua voimakkaasti rajoittava sairaus. Kalsiumherkistäjät ovat uusi, sydämen pumppausvoimaa lisäävä lääkeryhmä. Levosimendaani, kotimaista alkuperää oleva kalsiumherkistäjä, on kliinisessä käytössä akuutin vajaatoiminnan hoitoon suonensisäisesti ja lyhytaikaisesti annosteltavana valmisteena. Levosimendaanilla on aktiivinen metaboliitti, OR-1896, jonka oletetaan olevan vuorokauden mittaisen levosimendaani-infuusion jälkeen havaittujen useita päiviä kestävien hyödyllisisten vaikutuksisten takana. Levosimendaanin kroonisen, suun kautta tapahtuvan annostelun vaikutuksista tieto on vähäisempää, mutta sillä näyttää olevan positiivisia vaikutuksia potilaiden raportoimana. FM Marjut Louhelainen on selvittänyt väitöskirjassaan suun kautta annosteltavan levosimendaanin ja sen pitkäkestoisen aktiivisen metaboliitin vaikutuksia kroonisen vajaatoiminnan hoidossa käyttämällä sekä hypertensiivisen sydäntaudin että 2 tyypin diabeteksen komplisoimaan sydäninfarktin kokeellisia malleja. Tutkimuksessa selvitettiin lisäksi vajaatoimintaan johtavia molekyylitason tapahtumia sydänlihaksessa. Tutkimuksessa osoitettiin, että krooninen suun kautta annosteltu hoito sekä kalsiumherkistäjä levosimendaanilla että sen aktiivisella metaboliitilla estää hypertensiiviseen sydämen vajaatoiminnan aikaasaamaa sydämen uudelleenmuovaantumista ja siihen liittyvää kuolleisuutta. Nämä vaikutukset välittyivät vähentyneen sydänlihassoluhypertrofian, solukuolleisuuden ja neurohumaraalisen aktivaation kautta. Levosimendaanin ja OR-1896:n osoitettiin myös parantavan sydämen pumppausfunktiota tyyppi 2 diabeteksen komplisoimassa sydäninfarktissa. Ei-diabeettiseen tilanteeseen verrattuna diabetekseen liittyvä infarktin jälkeinen vajaatoiminnan kehitys oli yhteydessä lisääntyneeseen tulehdukseen, fibroosiin, solukuolemaan, neurohumoraaliseen aktivaatioon ja ennenaikaiseen kudoksen vanhenemiseen. Sekä levosimendaani, että OR-1869 vähensivät tulehduksen, fibroosin ja solukuoleman merkkejä ja vaimensi neurohumoraalista aktivaatiota. OR-1896 myös vähensi solujen vanhenemiseen liittyvien merkkiaineiden ilmentymistä. Väitöskirjassa todettiin, että suun kautta annosteltuna sekä levosimendaani, että sen aktiivinen metaboliitti OR-1896, omaavat terapeuttista potentiaalia sekä hypertensiivisen sydäntaudin hoitoon että sydäninfarktin jälkeisen vajaatoiminnan estoon. FM Marjut Louhelaisen farmakologian alaan kuuluva väitöskirja Effects of oral calcium sensitizers on experimental heart failure tarkastetaan Helsingin yliopiston Lääketieteellisessä tiedekunnassa perjantaina 29.01.2010 klo 12 (Biomedicum Helsinki, luentosali 2, Haartmaninkatu 8, Helsinki). Vastaväittäjänä toimii professori Raimo Tuominen, Helsingin yliopiston Farmasian tiedekunnasta ja kustoksena professori Eero Mervaala Helsingin yliopiston Lääketieteellisestä tiedekunnasta.
Resumo:
Sepsis is associated with a systemic inflammatory response. It is characterised by an early proinflammatory response and followed by a state of immunosuppression. In order to improve the outcome of patients with infection and sepsis, novel therapies that influence the systemic inflammatory response are being developed and utilised. Thus, an accurate and early diagnosis of infection and evaluation of immune state are crucial. In this thesis, various markers of systemic inflammation were studied with respect to enhancing the diagnostics of infection and of predicting outcome in patients with suspected community-acquired infection. A total of 1092 acutely ill patients admitted to a university hospital medical emergency department were evaluated, and 531 patients with a suspicion of community-acquired infection were included for the analysis. Markers of systemic inflammation were determined from a blood sample obtained simultaneously with a blood culture sample on admission to hospital. Levels of phagocyte CD11b/CD18 and CD14 expression were measured by whole blood flow cytometry. Concentrations of soluble CD14, interleukin (IL)-8, and soluble IL-2 receptor α (sIL-2Rα) were determined by ELISA, those of sIL-2R, IL-6, and IL-8 by a chemiluminescent immunoassay, that of procalcitonin by immunoluminometric assay, and that of C-reactive protein by immunoturbidimetric assay. Clinical data were collected retrospectively from the medical records. No marker of systemic inflammation, neither CRP, PCT, IL-6, IL-8, nor sIL-2R predicted bacteraemia better than did the clinical signs of infection, i.e., the presence of infectious focus or fever or both. IL-6 and PCT had the highest positive likelihood ratios to identify patients with hidden community-acquired infection. However, the use of a single marker failed to detect all patients with infection. A combination of markers including a fast-responding reactant (CD11b expression), a later-peaking reactant (CRP), and a reactant originating from inflamed tissues (IL-8) detected all patients with infection. The majority of patients (86.5%) with possible but not verified infection showed levels exceeding at least one cut-off limit of combination, supporting the view that infection was the cause of their acute illness. The 28-day mortality of patients with community-acquired infection was low (3.4%). On admission to hospital, the low expression of cell-associated lipopolysaccharide receptor CD14 (mCD14) was predictive for 28-day mortality. In the patients with severe forms of community-acquired infection, namely pneumonia and sepsis, high levels of soluble CD14 alone did not predict mortality, but a high sCD14 level measured simultaneously with a low mCD14 raised the possibility of poor prognosis. In conclusion, to further enhance the diagnostics of hidden community-acquired infection, a combination of inflammatory markers is useful; 28-day mortality is associated with low levels of mCD14 expression at an early phase of the disease.
Resumo:
Assessment of the outcome of critical illness is complex. Severity scoring systems and organ dysfunction scores are traditional tools in mortality and morbidity prediction in intensive care. Their ability to explain risk of death is impressive for large cohorts of patients, but insufficient for an individual patient. Although events before intensive care unit (ICU) admission are prognostically important, the prediction models utilize data collected at and just after ICU admission. In addition, several biomarkers have been evaluated to predict mortality, but none has proven entirely useful in clinical practice. Therefore, new prognostic markers of critical illness are vital when evaluating the intensive care outcome. The aim of this dissertation was to investigate new measures and biological markers of critical illness and to evaluate their predictive value and association with mortality and disease severity. The impact of delay in emergency department (ED) on intensive care outcome, measured as hospital mortality and health-related quality of life (HRQoL) at 6 months, was assessed in 1537 consecutive patients admitted to medical ICU. Two new biological markers were investigated in two separate patient populations: in 231 ICU patients and 255 patients with severe sepsis or septic shock. Cell-free plasma DNA is a surrogate marker of apoptosis. Its association with disease severity and mortality rate was evaluated in ICU patients. Next, the predictive value of plasma DNA regarding mortality and its association with the degree of organ dysfunction and disease severity was evaluated in severe sepsis or septic shock. Heme oxygenase-1 (HO-1) is a potential regulator of apoptosis. Finally, HO-1 plasma concentrations and HO-1 gene polymorphisms and their association with outcome were evaluated in ICU patients. The length of ED stay was not associated with outcome of intensive care. The hospital mortality rate was significantly lower in patients admitted to the medical ICU from the ED than from the non-ED, and the HRQoL in the critically ill at 6 months was significantly lower than in the age- and sex-matched general population. In the ICU patient population, the maximum plasma DNA concentration measured during the first 96 hours in intensive care correlated significantly with disease severity and degree of organ failure and was independently associated with hospital mortality. In patients with severe sepsis or septic shock, the cell-free plasma DNA concentrations were significantly higher in ICU and hospital nonsurvivors than in survivors and showed a moderate discriminative power regarding ICU mortality. Plasma DNA was an independent predictor for ICU mortality, but not for hospital mortality. The degree of organ dysfunction correlated independently with plasma DNA concentration in severe sepsis and plasma HO-1 concentration in ICU patients. The HO-1 -413T/GT(L)/+99C haplotype was associated with HO-1 plasma levels and frequency of multiple organ dysfunction. Plasma DNA and HO-1 concentrations may support the assessment of outcome or organ failure development in critically ill patients, although their value is limited and requires further evaluation.
Resumo:
Accumulating evidence show that kinins, notably bradykinin (BK) and kallidin, have cardioprotective effects. To these include reduction of left ventricular hypertrophy (LVH) and progression of heart failure. The effects are mediated through two G protein-coupled receptors- bradykinin type-2 receptor (BK-2R) and bradykinin type -1 receptor (BK-1R). The widely accepted cardioprotective effects of BK-receptors relate to triggering the production and release of vasodilating nitric oxide (NO) by endothelial cells. They also exert anti-proliferative effects on fibroblasts and anti-hypertrophic effects on myocytes, and thus may play an essential role in the cardioprotective response to myocardial injury. The role for BK-1Rs in HF is based on experimental animal models, where the receptors have been linked to cardioprotective- but also to cardiotoxic -effects. The BK-1Rs are induced under inflammatory and ischemic conditions, shown in animal models; no previous reports, concerning BK-1Rs in human heart failure, have been presented. The expression of BK-2Rs is down-regulated in human end-stage heart failure. Present results showed that, in these patients, the BK-1Rs were up-regulated, suggesting that also BK-1Rs are involved in the pathogenesis of human heart failure. The receptors were localized mainly in the endothelium of intramyocardial coronary vessels, and correlated with the increased TNF-α expression in the myocardial coronary vessels. Moreover, in cultured endothelial cells, TNF-α was a potent trigger of BK-1Rs. These results suggest that cytokines may be responsible for the up-regulation of BK-1Rs in human heart failure. A linear relationship between BK-2R mRNA and protein expression in normal and failing human left ventricles implies that the BK-2Rs are regulated on the transcriptional level, at least in human myocardium. The expression of BK-2Rs correlated positively with age in normal and dilated hearts (IDC). The results suggest that human hearts adapts to age-related changes, by up-regulating the expression of cardioprotective BK-2Rs. Also, in the BK-2R promoter polymorphism -58 T/C, the C-allele was accumulated in cardiomyopathy patients which may partially explain the reduced number of BK-2Rs. Statins reduce the level of plasma cholesterol, but also exert several non-cholesterol-dependent effects. These effects were studied in human coronary arterial endothelial cells (hCAEC) and incubation with lovastatin induced both BK-1 and BK-2Rs in a time and concentration-dependent way. The induced BK-2Rs were functionally active, thus NO production and cGMP signaling was increased. Induction was abrogated by mevalonate, a direct HMG-CoA metabolite. Lovastatin is known to inhibit Rho activation, and by a selective RhoA kinase inhibitor (Y27632), a similar induction of BK-2R expression as with lovastatin. Interestingly a COX-2-inhibitor (NS398) inhibited this lovastatin-induction of BK-2Rs, suggesting that COX-2 inhibitors may affect the endothelial BK-2Rs, in a negative fashion. Hypoxia is a common denominator in HF but also in other cardiovascular diseases. An induction of BK-2Rs in mild hypoxic conditions was shown in cultured hCAECs, which was abolished by a specific BK-2R inhibitor Icatibant. These receptors were functionally active, thus BK increased and Icatibant inhibited the production of NO. In rat myocardium the expression of BK-2R was increased in the endothelium of vessels, forming at the border zone, between the scar tissue and the healthy myocardium. Moreover, in in vitro wound-healing assay, endothelial cells were cultured under hypoxic conditions and BK significantly increased the migration of these cells and as Icatibant inhibited it. These results show, that mild hypoxia triggers a temporal expression of functionally active BK-2Rs in human and rat endothelial cells, supporting a role for BK-2Rs, in hypoxia induced angiogenesis. Our and previous results show, that BK-Rs have an impact on the cardiovascular diseases. In humans, at the end stage of heart failure, the BK-2Rs are down-regulated and BK-1Rs induced. Whether the up-regulation of BK-1Rs, is a compensatory mechanism against the down-regulation of BK-2Rs, or merely reflects the end point of heart failure, remains to bee seen. In a clinical point of view, the up-regulation of BK-2Rs, under hypoxic conditions or statin treatment, suggests that, the induction of BK-2Rs is protective in cardiovascular pathologies and those treatments activating BK-2Rs, might give additional tools in treating heart failure.
Resumo:
Septic shock is a common killer in intensive care units (ICU). The most crucial issue concerning the outcome is the early and aggressive start of treatment aimed at normalization of hemodynamics and the early start of antibiotics during the very first hours. The optimal targets of hemodynamic treatment, or impact of hemodynamic treatment on survival after first resuscitation period are less known. The objective of this study was to evaluate different aspects of the hemodynamic pattern in septic shock with special attention to prediction of outcome. In particular components of early treatment and monitoring in the ICU were assessed. A total of 401 patients, 218 with septic shock and 192 with severe sepsis or septic shock were included in the study. The patients were treated in 24 Finnish ICUs during 1999-2005. 295 of the patients were included in the Finnish national epidemiologic Finnsepsis study. We found that the most important hemodynamic variables concerning the outcome were the mean arterial pressures (MAP) and lactate during the first six hours in ICU and the MAP and mixed venous oxygen saturation (SvO2) under 70% during first 48 hours. The MAP levels under 65 mmHg and SvO2 below 70% were the best predictive thresholds. Also the high central venous pressure (CVP) correlated to adverse outcome. We assessed the correlation and agreement of SvO2 and mean central venous oxygen saturation (ScvO2) in septic shock during first day in ICU. The mean SvO2 was below ScvO2 during early sepsis. Bias of difference was 4.2% (95% limits of agreement 8.1% to 16.5%) by Bland-Altman analysis. The difference between saturation values correlated significantly to cardiac index and oxygen delivery. Thus, the ScvO2 can not be used as a substitute of SvO2 in hemodynamic monitoring in ICU. Several biomarkers have been investigated for their ability to help in diagnosis or outcome prediction in sepsis. We assessed the predictive value of N-terminal pro brain natriuretic peptide (NT-proBNP) on mortality in severe sepsis or septic shock. The NT-proBNP levels were significantly higher in hospital nonsurvivors. The NT-proBNP 72 hrs after inclusion was independent predictor of hospital mortality. The acute cardiac load contributed to NTproBNP values at admission, but renal failure was the main confounding factor later. The accuracy of NT-proBNP, however, was not sufficient for clinical decision-making concerning the outcome prediction. The delays in start of treatment are associated to poorer prognosis in sepsis. We assessed how the early treatment guidelines were adopted, and what was the impact of early treatment on mortality in septic shock in Finland. We found that the early treatment was not optimal in Finnish hospitals and this reflected to mortality. A delayed initiation of antimicrobial agents was especially associated with unfavorable outcome.
Resumo:
The outcome of the successfully resuscitated patient is mainly determined by the extent of hypoxic-ischemic cerebral injury, and hypothermia has multiple mechanisms of action in mitigating such injury. The present study was undertaken from 1997 to 2001 in Helsinki as a part of the European multicenter study Hypothermia after cardiac arrest (HACA) to test the neuroprotective effect of therapeutic hypothermia in patients resuscitated from out-of-hospital ventricular fibrillation (VF) cardiac arrest (CA). The aim of this substudy was to examine the neurological and cardiological outcome of these patients, and especially to study and develop methods for prediction of outcome in the hypothermia-treated patients. A total of 275 patients were randomized to the HACA trial in Europe. In Helsinki, 70 patients were enrolled in the study according to the inclusion criteria. Those randomized to hypothermia were actively cooled externally to a core temperature 33 ± 1ºC for 24 hours with a cooling device. Serum markers of ischemic neuronal injury, NSE and S-100B, were sampled at 24, 36, and 48 hours after CA. Somatosensory and brain stem auditory evoked potentials (SEPs and BAEPs) were recorded 24 to 28 hours after CA; 24-hour ambulatory electrocardiography recordings were performed three times during the first two weeks and arrhythmias and heart rate variability (HRV) were analyzed from the tapes. The clinical outcome was assessed 3 and 6 months after CA. Neuropsychological examinations were performed on the conscious survivors 3 months after the CA. Quantitative electroencephalography (Q-EEG) and auditory P300 event-related potentials were studied at the same time-point. Therapeutic hypothermia of 33ºC for 24 hours led to an increased chance of good neurological outcome and survival after out-of-hospital VF CA. In the HACA study, 55% of hypothermia-treated patients and 39% of normothermia-treated patients reached a good neurological outcome (p=0.009) at 6 months after CA. Use of therapeutic hypothermia was not associated with any increase in clinically significant arrhythmias. The levels of serum NSE, but not the levels of S-100B, were lower in hypothermia- than in normothermia-treated patients. A decrease in NSE values between 24 and 48 hours was associated with good outcome at 6 months after CA. Decreasing levels of serum NSE but not of S-100B over time may indicate selective attenuation of delayed neuronal death by therapeutic hypothermia, and the time-course of serum NSE between 24 and 48 hours after CA may help in clinical decision-making. In SEP recordings bilaterally absent N20 responses predicted permanent coma with a specificity of 100% in both treatment arms. Recording of BAEPs provided no additional benefit in outcome prediction. Preserved 24- to 48-hour HRV may be a predictor of favorable outcome in CA patients treated with hypothermia. At 3 months after CA, no differences appeared in any cognitive functions between the two groups: 67% of patients in the hypothermia and 44% patients in the normothermia group were cognitively intact or had only very mild impairment. No significant differences emerged in any of the Q-EEG parameters between the two groups. The amplitude of P300 potential was significantly higher in the hypothermia-treated group. These results give further support to the use of therapeutic hypothermia in patients with sudden out-of-hospital CA.