19 resultados para Derivatives pricing
Resumo:
Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
A better understanding of stock price changes is important in guiding many economic activities. Since prices often do not change without good reasons, searching for related explanatory variables has involved many enthusiasts. This book seeks answers from prices per se by relating price changes to their conditional moments. This is based on the belief that prices are the products of a complex psychological and economic process and their conditional moments derive ultimately from these psychological and economic shocks. Utilizing information about conditional moments hence makes it an attractive alternative to using other selective financial variables in explaining price changes. The first paper examines the relation between the conditional mean and the conditional variance using information about moments in three types of conditional distributions; it finds that the significance of the estimated mean and variance ratio can be affected by the assumed distributions and the time variations in skewness. The second paper decomposes the conditional industry volatility into a concurrent market component and an industry specific component; it finds that market volatility is on average responsible for a rather small share of total industry volatility — 6 to 9 percent in UK and 2 to 3 percent in Germany. The third paper looks at the heteroskedasticity in stock returns through an ARCH process supplemented with a set of conditioning information variables; it finds that the heteroskedasticity in stock returns allows for several forms of heteroskedasticity that include deterministic changes in variances due to seasonal factors, random adjustments in variances due to market and macro factors, and ARCH processes with past information. The fourth paper examines the role of higher moments — especially skewness and kurtosis — in determining the expected returns; it finds that total skewness and total kurtosis are more relevant non-beta risk measures and that they are costly to be diversified due either to the possible eliminations of their desirable parts or to the unsustainability of diversification strategies based on them.
Resumo:
Financial time series tend to behave in a manner that is not directly drawn from a normal distribution. Asymmetries and nonlinearities are usually seen and these characteristics need to be taken into account. To make forecasts and predictions of future return and risk is rather complicated. The existing models for predicting risk are of help to a certain degree, but the complexity in financial time series data makes it difficult. The introduction of nonlinearities and asymmetries for the purpose of better models and forecasts regarding both mean and variance is supported by the essays in this dissertation. Linear and nonlinear models are consequently introduced in this dissertation. The advantages of nonlinear models are that they can take into account asymmetries. Asymmetric patterns usually mean that large negative returns appear more often than positive returns of the same magnitude. This goes hand in hand with the fact that negative returns are associated with higher risk than in the case where positive returns of the same magnitude are observed. The reason why these models are of high importance lies in the ability to make the best possible estimations and predictions of future returns and for predicting risk.
Resumo:
This study contributes to our knowledge of how information contained in financial statements is interpreted and priced by the stock market in two aspects. First, the empirical findings indicate that investors interpret some of the information contained in new financial statements in the context of the information of prior financial statements. Second, two central hypotheses offered in earlier literature to explain the significant connection between publicly available financial statement information and future abnormal returns, that the signals proxy for risk and that the information is priced with a delay, are evaluated utilizing a new methodology. It is found that the mentioned significant connection for some financial statement signals can be explained by that the signals proxy for risk and for other financial statement signals by that the information contained in the signals is priced with a delay.
Resumo:
This study examined the effects of the Greeks of the options and the trading results of delta hedging strategies, with three different time units or option-pricing models. These time units were calendar time, trading time and continuous time using discrete approximation (CTDA) time. The CTDA time model is a pricing model, that among others accounts for intraday and weekend, patterns in volatility. For the CTDA time model some additional theta measures, which were believed to be usable in trading, were developed. The study appears to verify that there were differences in the Greeks with different time units. It also revealed that these differences influence the delta hedging of options or portfolios. Although it is difficult to say anything about which is the most usable of the different time models, as this much depends on the traders view of the passing of time, different market conditions and different portfolios, the CTDA time model can be viewed as an attractive alternative.
Resumo:
The use of different time units in option pricing may lead to inconsistent estimates of time decay and spurious jumps in implied volatilities. Different time units in the pricing model leads to different implied volatilities although the option price itself is the same.The chosen time unit should make it necessary to adjust the volatility parameter only when there are some fundamental reasons for it and not due to wrong specifications of the model. This paper examined the effects of option pricing using different time hypotheses and empirically investigated which time frame the option markets in Germany employ over weekdays. The paper specifically tries to get a picture of how the market prices options. The results seem to verify that the German market behaves in a fashion that deviates from the most traditional time units in option pricing, calendar and trading days. The study also showed that the implied volatility of Thursdays was somewhat higher and thus differed from the pattern of other days of the week. Using a GARCH model to further investigate the effect showed that although a traditional tests, like the analysis of variance, indicated a negative return for Thursday during the same period as the implied volatilities used, this was not supported using a GARCH model.
Resumo:
This study evaluates three different time units in option pricing: trading time, calendar time and continuous time using discrete approximations (CTDA). The CTDA-time model partitions the trading day into 30-minute intervals, where each interval is given a weight corresponding to the historical volatility in the respective interval. Furthermore, the non-trading volatility, both overnight and weekend volatility, is included in the first interval of the trading day in the CTDA model. The three models are tested on market prices. The results indicate that the trading-time model gives the best fit to market prices in line with the results of previous studies, but contrary to expectations under non-arbitrage option pricing. Under non-arbitrage pricing, the option premium should reflect the cost of hedging the expected volatility during the option’s remaining life. The study concludes that the historical patterns in volatility are not fully accounted for by the market, rather the market prices options closer to trading time.
Resumo:
Pricing American put options on dividend-paying stocks has largely been ignored in the option pricing literature because the problem is mathematically complex and valuation usually resorts to computationally expensive and impractical pricing applications. This paper computed a simulation study, using two different approximation methods for the valuation of American put options on a stock with known discrete dividend payments. This to find out if there were pricing errors and to find out which could be the most usable method for practical users. The option pricing models used in the study was the dividend approximation by Blomeyer (1986) and the one by Barone-Adesi and Whaley (1988). The study showed that the approximation method by Blomeyer worked satisfactory for most situations, but some errors occur for longer times to the dividend payment, for smaller dividends and for in-the-money options. The approximation method by Barone-Adesi and Whaley worked well for in-the-money options and at-the-money options, but had serious pricing errors for out-of-the-money options. The conclusion of the study is that a combination of the both methods might be preferable to any single model.
Resumo:
This study examines the intraday and weekend volatility on the German DAX. The intraday volatility is partitioned into smaller intervals and compared to a whole day’s volatility. The estimated intraday variance is U-shaped and the weekend variance is estimated to 19 % of a normal trading day. The patterns in the intraday and weekend volatility are used to develop an extension to the Black and Scholes formula to form a new time basis. Calendar or trading days are commonly used for measuring time in option pricing. The Continuous Time using Discrete Approximations model (CTDA) developed in this study uses a measure of time with smaller intervals, approaching continuous time. The model presented accounts for the lapse of time during trading only. Arbitrage pricing suggests that the option price equals the expected cost of hedging volatility during the option’s remaining life. In this model, time is allowed to lapse as volatility occurs on an intraday basis. The measure of time is modified in CTDA to correct for the non-constant volatility and to account for the patterns in volatility.
Resumo:
The objective of this paper is to investigate the pricing accuracy under stochastic volatility where the volatility follows a square root process. The theoretical prices are compared with market price data (the German DAX index options market) by using two different techniques of parameter estimation, the method of moments and implicit estimation by inversion. Standard Black & Scholes pricing is used as a benchmark. The results indicate that the stochastic volatility model with parameters estimated by inversion using the available prices on the preceding day, is the most accurate pricing method of the three in this study and can be considered satisfactory. However, as the same model with parameters estimated using a rolling window (the method of moments) proved to be inferior to the benchmark, the importance of stable and correct estimation of the parameters is evident.
Resumo:
The purpose of this study was to deepen our knowledge of the combined use of estramustine and radiotherapy in the treatment of prostate cancer. Prostate cancer is a common disease, with a high variability between subjects in its malignant potential. In many cases, the disease is an incidental finding with little or no clinical significance. In other cases, however, prostate cancer may be an aggressive malignant disease, which, if the initial treatment fails, lacks an effective cure and may lead to severe symptoms, metastasis, and death despite all treatment. In many cases, the methods of treatment available at the moment provide cure or significant regression of symptoms, but often at the cost of considerable side effects. Estramustine, a cytostatic drug used for treating advanced cancer of the prostate, has been shown to inhibit prostate cancer progression and also to increase the sensitivity of cancer cells to radiotherapy. The goals of this study were, first, to find out whether it is possible to use either estramustine or an antibody against estramustine binding protein as carrier molecules for bringing therapeutic radioisotopes into prostate cancer cells, and, secondly, to gain more understanding of the mechanisms behind the known radiosensitising effect of estramustine. Estramustine and estramustine binding protein antibody were labelled with iodine-125 to study the biodistribution of these substances in mice. In the first experiment, both of the substances accumulated in the prostate, but radioiodinated estramustine also showed affinity to the liver and the lungs. Since the radiolabelled antibody was found out to accumulate more selectively to the prostate, we studied its biodistribution in nude mice with DU-145 human prostate cancer implants. In this experiment, the prostate and the tumour accumulated more radioactivity than other organs, but we concluded that the difference in the dose of radiation compared to other organs was not sufficient for the radioiodinated antibody to be advocated as a carrier molecule for treating prostate cancer. Mice with similar DU-145 prostate cancer implants were then treated with estramustine and external beam irradiation, with and without neoadjuvant estramustine treatment. The tumours responded to the treatment as expected, showing the radiation potentiating effect of estramustine. In the third experiment, this effect was found without an increase in the amount of apoptosis in the tumour cells, despite previous suggestions to the contrary. In the fourth experiment, we gave a similar treatment to the mice with DU-145 tumours. A reduction in proliferation was found in the groups treated with radiotherapy, and an increased amount of tumour hypoxia and tumour necrosis in the group treated with both neoadjuvant estramustine and radiation. This finding is contradictory to the suggestion that the radiation sensitising effect of estramustine could be attributed to its angiogenic activity.