49 resultados para Central nervous system.
Resumo:
Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.
Resumo:
Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.
Resumo:
The occurrence of gestational diabetes (GDM) during pregnancy is a powerful sign of a risk of later type 2 diabetes (T2D) and cardiovascular diseases (CVDs). The physiological basis for this disease progression is not yet fully understood, but increasing evidence exists on interplay of insulin resistance, subclinical inflammation, and more recently, on unbalance of the autonomic nervous system. Since the delay in development of T2D and CVD after GDM ranges from years to decades, better understanding of the pathophysiology of GDM could give us new tools for primary prevention. The present study was aimed at investigating the role of the sympathetic nervous system (SNS) in GDM and its associations with insulin and a variety of inflammatory cytokines and coagulation and fibrinolysis markers. This thesis covers two separate study lines. Firstly, we investigated 41 women with GDM and 22 healthy pregnant and 14 non-pregnant controls during the night in hospital. Blood samples were drawn at 24:00, 4:00 and 7:00 h to determine the concentrations of plasma glucose, insulin, noradrenaline (NA) and adrenomedullin, markers of subclinical inflammation, coagulation and fibrinolysis variables and platelet function. Overnight holter ECG recording was performed for analysis of heart rate variability (HRV). Secondly, we studied 87 overweight hypertensive women with natural menopause. They were randomised to use a central sympatholytic agent, moxonidine (0.3mg twice daily), the β-blocking agent atenolol (50 mg once daily+blacebo once daily) for 8 weeks. Inflammatory markers and adiponectin were analysed at the beginning and after 8 weeks. Activation of the SNS (increase in NA, decreased HRV) was seen in pregnant vs. non-pregnant women, but no difference existed between GDM and normal pregnancy. However, modulation (internal rhythm) of HRV was attenuated in GDM. Insulin and inflammatory cytokine levels were comparable in all pregnant women but nocturnal variation of concentrations of C-reactive protein, serum amyloid A and insulin were reduced in GDM. Levels of coagulation factor VIII were lower in GDM compared with normal pregnancy, whereas no other differences were seen in coagulation and fibrinolysis markers. No significant associations were seen between NA and the studied parameters. In the study of postmenopausal women, moxonidine treatment was associated with favourable changes in the inflammatory profile, seen as a decrease in TNFα concentrations (increase in atenolol group) and preservation of adiponectin levels (decrease in atenolol group). In conclusion, our results did not support our hypotheses of increased SNS activity in GDM or a marked association between NA and inflammatory and coagulation markers. Reduced biological variation of HRV, insulin and inflammatory cytokines suggests disturbance of autonomic and hormonal regulatory mechanisms in GDM. This is a novel finding. Further understanding of the regulatory mechanisms could allow earlier detection of risk women and the possibility of prevention. In addition, our results support consideration of the SNS as one of the therapeutic targets in the battle against metabolic diseases, including T2D and CVD.
Resumo:
Traumatic insults to the central nervous system are frequently followed by profound and irreversible neuronal loss as well as the inability of the damaged neurons to regenerate. One of the major therapeutic challenges is to increase the amount of surviving neurons after trauma. Thus it is crucial to understand how injury affects neuronal responses and which conditions are optimal for survival to prevent neuronal loss. During development neuronal survival is thought to be dependent on the competition for the availability of survival-promoting molecules called neurotrophic factors. Much less is known on the survival mechanisms of mature neurons under traumatic conditions. Increasing amount of evidence points towards the possibility that after injury neuronal responses might aquire some developmental characteristics. One of the important examples is the change in the responses to the neurotransmitter GABA: it is inhibitory in the intact mature neurons, but can induce excitation during development and after trauma. An important step in the maturation of GABAergic transmission in the CNS is the developmental shift in the action of GABAA receptor from depolarization in immature neurons to hyperpolarization in mature neurons. GABAA-mediated responses are tightly linked to the homeostasis of the chloride anion (Cl-), which in neurons is mainly regulated by Na+-K+-2Cl- cotransporter NKCC1 and K+-Cl- cotransporter KCC2. Trauma-induced functional downregulation of KCC2 promotes a shift from hyperpolarizing GABAA-mediated responses to depolarizing. Other important consequences of neuronal trauma are the emergence of dependency of central neurons on brain-derived neuro¬trophic factor (BDNF) for survival, as well as the upregulation of neurotrophin receptor p75NTR. Our aim was to answer the question whether these post-traumatic events are interrelated, and whether the regulation of BDNF and KCC2 expression is different under traumatic conditions and in intact neurons. To study responses of injured mature central neurons, we used an in vitro and in vivo axotomy models. For in vitro studies, we lesioned organotypic hippocampal slices between CA3 and CA1 regions, which resulted in selective axotomy of the CA3 neurons and denervation of the CA1 neurons. Some experiments were repeated in vivo by lesioning the neurons of the corticospinal tract at the internal capsule level, or by lesioning spinal motoneurons at the ventral root. We show that intact mature neurons do not require BDNF for survival, whereas in axotomized neurons apoptosis is induced upon BDNF deprivation. We further show that post-traumatic dependency on BDNF is mediated by injury-induced upregulation of p75NTR. Post-traumatic increase in p75NTR is induced by GABAA-mediated depolarization, consequent opening of voltage-gated Ca2+ channels, and the activation of Rho kinase ROCK. Thus, post-traumatic KCC2 downregulation leads to the dependency on BDNF through the induction of p75NTR upregulation. Neurons that survive after axotomy over longer period of time lose BDNF dependency and regain normal KCC2 levels. This phenomenon is promoted by BDNF itself, since after axotomy contrary to normal conditions KCC2 is upregulated by BDNF. The developmentally important thyroid hormone thyroxin regulates BDNF expression during development. We show that in mature intact neurons thyroxin downregulates BDNF, whereas after axotomy thyroxin upregulates BDNF. The elevation of BDNF expression by thyroxin promoted survival of injured neurons. In addition, thyroxin also enhanced axonal regeneration and promoted the regaining of normal levels of KCC2. Thus we show that this hormone acts at several levels on the axotomy-initiated chain of events described in the present work, and could be a potential therapeutic agent for the injured neurons. We have also characterized a previously unknown downregulatory interaction between thyroxin and KCC2 in intact neurons. In conclusion, we identified several important interactions at the neurotrophin-protein and hormone-neurotrophin level that acquire immature-like characteristics after axotomy and elucidated an important part of the mechanism by which axotomy leads to the requirement of BDNF trophic support. Based on these findings, we propose a new potential therapeutic strategy where developmentally crucial agents could be used to enhance survival and regeneration of axotomized mature central neurons.
Resumo:
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system, characterized especially by myelin and axon damage. Cognitive impairment in MS is common but difficult to detect without a neuropsychological examination. Valid and reliable methods are needed in clinical practice and research to detect deficits, follow their natural evolution, and verify treatment effects. The Paced Auditory Serial Addition Test (PASAT) is a measure of sustained and divided attention, working memory, and information processing speed, and it is widely used in MS patients neuropsychological evaluation. Additionally, the PASAT is the sole cognitive measure in an assessment tool primarly designed for MS clinical trials, the Multiple Sclerosis Functional Composite (MSFC). The aims of the present study were to determine a) the frequency, characteristics, and evolution of cognitive impairment among relapsing-remitting MS patients, and b) the validity and reliability of the PASAT in measuring cognitive performance in MS patients. The subjects were 45 relapsing-remitting MS patients from Seinäjoki Central Hospital, Department of Neurology and 48 healthy controls. Both groups underwent comprehensive neuropsychological assessments, including the PASAT, twice in a one-year follow-up, and additionally a sample of 10 patients and controls were evaluated with the PASAT in serial assessments five times in one month. The frequency of cognitive dysfunction among relapsing-remitting MS patients in the present study was 42%. Impairments were characterized especially by slowed information processing speed and memory deficits. During the one-year follow-up, the cognitive performance was relatively stable among MS patients on a group level. However, the practice effects in cognitive tests were less pronounced among MS patients than healthy controls. At an individual level the spectrum of MS patients cognitive deficits was wide in regards to their characteristics, severity, and evolution. The PASAT was moderately accurate in detecting MS-associated cognitive impairment, and 69% of patients were correctly classified as cognitively impaired or unimpaired when comprehensive neuropsychological assessment was used as a "gold standard". Self-reported nervousness and poor arithmetical skills seemed to explain misclassifications. MS-related fatigue was objectively demonstrated as fading performance towards the end of the test. Despite the observed practice effect, the reliability of the PASAT was excellent, and it was sensitive to the cognitive decline taking place during the follow-up in a subgroup of patients. The PASAT can be recommended for use in the neuropsychological assessment of MS patients. The test is fairly sensitive, but less specific; consequently, the reasons for low scores have to be carefully identified before interpreting them as clinically significant.
Resumo:
The temperamental traits of Cloninger’s personality theory (novelty seeking, harm avoidance, reward dependence and persistence) reflect independent systems of central nervous system deciding responses toward new, rewarding and aversive stimuli. Thus, certain temperamental traits and their combinations may predispose to heavy drinking and alcohol dependence. Hence, the aim of the present study was to investigate associations between temperamental traits and the amount of alcohol consumption, frequency of heavy drinking and the maximum number of drinks per occasion. In this study, we investigated also whether these associations are only confounded by between-family differences in genetic and environmental factors. Furthermore the associations between temperamental trait combinations that reflect Cloninger's typology of alcoholism and alcohol use were studied. The subjects (n=401) in the current study were a group of FinnTwin16 study participators, Finnish twins born in 1974-79. Temperament was measured with TCI-R (Temperament and Character Inventory-Revised) a self-report form. The amount of alcohol consumption was asked by Semi-structured interview (Semi-Structured Assessment of Genetics of Alcoholism = SSAGA). The frequency of heavy drinking and maximum number of drinks per occasion were asked by mail form. In accordance with previous studies, novelty seeking had a positive relationship with the amount of alcohol consumption, frequency of heavy drinking and the maximum number of drinks per occasion in both genders. In this study, the association was proven independent of between-family differences in genetic and environmental factors that are associated to both novelty seeking and alcohol use. Surprisingly, reward dependence was negatively related to the maximum number of drinks per occasion in both genders. Persistence had a weak positive relationship with maximum number of drinks per occasion in men. The temperamental trait combinations that reflect Cloninger's typology of alcoholism did not differ from the other combinations in regard to alcohol use as hypothesized. The results confirm the previous finding about the relationship between novelty seeking and alcohol use. Support for Cloninger's typology of alcoholism in regard to combinations of temperamental trait was not achieved in this study.
Resumo:
Cathepsin D (CTSD) is a lysosomal protease, the deficiency of which is fatal and associated with neurodegeneration. CTSD knock-out mice, which die at the age of four weeks, show intestinal necrosis, loss of lymphoid cells and moderate pathological changes in the brain. An active-site mutation in the CTSD gene underlies a neurodegenerative disease in newborn sheep, characterized by brain atrophy without any changes to visceral tissues. The CTSD deficiences belong to the group of neuronal ceroid-lipofuscinoses (NCLs), severe neurodegenerative lysosomal storage disorders. The aim of this thesis was to examine the molecular and cellular mechanisms behind neurodegeneration in CTSD deficiency. We found the developmental expression pattern of CTSD to resemble that of synaptophysin and the increasing expression of CTSD to coincide with the active period of myelination in the rat brain, suggesting a role for CTSD in early rat brain development. An active-site mutation underlying the congenital ovine NCL not only affected enzymatic activity, but also changed the stability, processing and transport of the mutant protein, possibly contributing to the disease pathogenesis. We also provide CTSD deficiency as a first molecular explanation for human congenital NCL, a lysosomal storage disorder, characterized by neuronal loss and demyelination in the central nervous system. Finally, we show the first evidence for synaptic abnormalities and thalamocortical changes in CTSD-deficient mice at the molecular and ultrastructural levels. Keywords: cathepsin D, congenital, cortex, lysosomal storage disorder, lysosome, mutation, neurodegeneration, neuronal ceroid-lipofuscinosis, overexpression, synapse, thalamus
Resumo:
Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.
Resumo:
Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.