17 resultados para Animal reproduction
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
In Finland, suckler cow production is carried out in circumstances characterized by a long winter period and a short grazing period. The traditional winter housing system for suckler cows has been insulated or uninsulated buildings, but there is a demand for developing less expensive housing systems. In addition, more information is needed on new winter feeding strategies, carried out in inexpensive winter facilities with conventional (hay, grass silage, straw) or alternative (treated straw, industrial by-product, whole-crop silage) feeds. The new feeding techniques should not have any detrimental effects on animal welfare in order to be acceptable to both farmers and consumers. Furthermore, no official feeding recommendations for suckler cows are available in Finland and, thus, recommendations for dairy cows have been used. However, this may lead to over- or underfeeding of suckler cows and, finally, to decreased economic output. In Experiment I, second-calf beef-dairy suckler cows were used to compare the effects of diets based on hay (H) or urea-treated straw (US) at two feeding levels (Moderate; M vs. Low; L) on the performance of cows and calves. Live weight (LW) gain during the indoor feeding was lower for cows on level L than on level M. Cows on diet US lost more LW indoors than those on diet H. The cows replenished the LW losses on good pasture. Calf LW gain and cow milk production were unaffected by the treatments. Conception rate was unaffected by the treatments but was only 69%. Urea-treated straw proved to be a suitable winter feed for spring-calving suckler cows. Experiment II studied the effects of feeding accuracy on the performance of first- and second-calf beef-dairy cows and calves. In II-1, the day-to-day variation in the roughage offered ranged up to ± 40%. In II-2, the same variation was used in two-week periods. Variation of the roughages offered had minor effects on cow performance. Reproduction was unaffected by the feeding accuracy. Accurate feeding is not necessary for young beef-dairy crosses, if the total amount of energy offered over a period of a few weeks fulfills the energy requirements. Effects of feeding strategies with alternative feeds on the performance of mature beef-dairy and beef cows and calves were evaluated in Experiment III. Two studies consisted of two feeding strategies (Step-up vs. Flat-rate) and two diets (Control vs. Alternative). There were no differences between treatments in the cow LW, body condition score (BCS), calf pre-weaning LW gain and cow reproduction. A flat-rate strategy can be practised in the nutrition of mature suckler cows. Oat hull based flour-mill by product can partly replace grass silage and straw in the winter diet. Whole-crop barley silage can be offered as a sole feed to suckler cows. Experiment IV evaluated during the winter feeding period the effects of replacing grass silage with whole-crop barley or oat silage on mature beef cow and calf performance. Both whole-crop silages were suitable winter feeds for suckler cows in cold outdoor winter conditions. Experiment V aimed at assessing the effects of daily feeding vs. feeding every third day on the performance of mature beef cows and calves. No differences between the treatments were observed in cow LW, BCS, milk production and calf LW. The serum concentrations of urea and long-chain fatty acids were increased on the third day after feeding in the cows fed every third day. Despite of that the feeding every third day is an acceptable feeding strategy for mature suckler cows. Experiment VI studied the effects of feeding levels and long-term cold climatic conditions on mature beef cows and calves. The cows were overwintered in outdoor facilities or in an uninsulated indoor facility. Whole-crop barley silage was offered either ad libitum or restricted. All the facilities offered adequate shelter for the cows. The restricted offering of whole-crop barley silage provided enough energy for the cows. The Finnish energy recommendations for dairy cows were too high for mature beef breed suckler cows in good body condition at housing, even in cold conditions. Therefore, there is need to determine feeding recommendations for suckler cows in Finland. The results showed that the required amount of energy can be offered to the cows using conventional or alternative feeds provided at a lower feeding level, with an inaccurate feeding, flat-rate feeding or feeding every third day strategy. The cows must have an opportunity to replenish the LW and BCS losses at pasture before the next winter. Production in cold conditions can be practised in inexpensive facilities when shelter against rain and wind, a dry resting place, adequate amounts of feed suitable for cold conditions and water are provided for the animals as was done in the present study.
Resumo:
The relationship between sexual reproduction of littoral chydorid cladocerans (Anomopoda, Chydoridae) and environmental factors in aquatic ecosystems has been rarely studied, although the sexual behavior of some planktonic cladocerans is well documented. Ecological monitoring was used to study the relationship between climate-related and non-climatic environmental factors and chydorid sexual reproduction patterns in nine environmentally different lakes that were closely situated to each other in southern Finland. Furthermore, paleolimnological ephippium analysis was used to clarify how current sexual reproduction is reflected in surface sediments of the same nine lakes. Additionally, short sediment cores from two of the lakes were studied with ephippium analysis to examine how recent climate-related and non-climatic environmental changes were reflected in chydorid sexual reproduction. Ephippium analysis uses the subfossil shells of asexual individuals to represent asexual reproduction and the shells of sexual females, i.e. ephippia, to represent sexual reproduction. The relative proportion of ephippia of all chydorid species, i.e. total chydorid ephippia (TCE) indicates the relative proportion of sexual reproduction during the open-water season. This thesis is part of the EPHIPPIUM-project which aims to develop ephippium analysis towards a quantitative climate reconstruction tool. To be able to develop a valid climate model, the influence of the environmental stressors other than climate on contemporary sexual reproduction and its reflection in sediment assemblages must be clarified so they can be eliminated from the model. During contemporary monitoring a few sexual individuals were observed during summer, apparently forced to sexual reproduction by non-climatic local environmental factors, such as crowding or invertebrate predation. Monitoring also revealed that the autumnal chydorid sexual reproduction period was consistent between the different lakes and climate-related factors appeared to act as the main inducers and regulators of autumnal sexual reproduction. However, during autumn, chydorid species and populations among the lakes exhibited a wide variation in the intensity, induction time, and length of autumnal sexual reproduction. These variations apparently act as mechanisms for local adaptations due to the genetic variability provided by sexual reproduction that enhance the ecological flexibility of chydorid species, allowing them to inhabit a wide range of environments. A large variation was also detected in the abundance of parthenogenetic and gamogenetic individuals during the open-water season among the lakes. On the basis of surface sediment samples, the general level of the TCE is ca. 3-4% in southern Finland, reflecting an average proportion of sexual reproduction in this specific climate. The variation in the TCE was much lower than could be expected on the basis of the monitoring results. This suggests that some of the variation detected by monitoring may derive from differences between sampling sites and years smoothed out in the sediment samples, providing an average of the entire lake area and several years. The TCE is always connected to various ecological interactions in lake ecosystems and therefore is always lake-specific. Hypothetically, deterioration of climate conditions can be detected in the TCE as an increase in ephippia of all chydorid species, since a shortening open-water season is reflected in the relative proportions of the two reproduction modes. Such an increase was clearly detected for the time period of the Little Ice Age in a sediment core. The paleolimnological results also indicated that TCE can suddenly increase due to ephippia of one or two species, which suggests that at least some chydorids can somehow increase the production of resting eggs under local environmental stress. Thus, some environmental factors may act as species-specific environmental stressors. The actual mechanism of the increased sexual reproduction seen in sediments has been unknown but the present study suggests that the mechanism is probably the increased intensity of gamogenesis, i.e. that a larger proportion of individuals in autumnal populations reproduce sexually, which results in a larger proportion of ephippia in sediments and a higher TCE. The results of this thesis demonstrate the utility of ephippium analysis as a paleoclimatological method which may also detect paleolimnological changes by identifying species-specific environmental stressors. For a quantitative TCE-based climate reconstruction model, the natural variation in the TCE of surface sediments in different climates must be clarified with more extensive studies. In addition, it is important to recognize the lakes where the TCE is not only a reflection of the length of the open-water season, but is also non-climatically forced. The results of ephippium analysis should always be interpreted in a lake-specific manner and in the context of other paleoecological proxies.
Resumo:
Natural selection generally operates at the level of the individual, or more specifically at the level of the gene. As a result, individual selection does not always favour traits which benefit the population or species as a whole. The spread of an individual gene may even act to the detriment of the organism in which it finds. Thus selection at the level of the individual can affect processes at the level of the organism, group or even at the level of the species. As most behaviours ultimately affect births, deaths and the distribution of individuals, it seems inevitable that behavioural decisions will have an impact on population dynamics and population densities. Behavioural decisions can often involve costs through allocation of energy into behavioural strategies, such as the investment into armaments involved in fighting over resources or increased mortality due to injury or increased predation risk. Similarly, behaviour may act o to benefit the population, in terms of higher survival and increased fecundity. Examples include increased investment through parental care, choosing a mate based on the nuptial gifts they may supply and choosing territories in the face of competition. Investigating the impact of behaviour on population ecology may seem like a trivial task, but it is likely to have important consequences at different levels. For example, antagonistic behaviour may occasionally become so extreme that it increases the risk of extinction, and such extinction risk may have important implications for conservation. As a corollary, any such behaviour may also act as a macroevolutionary force, weeding out populations with traits which, whilst beneficial to the individuals in the short term, ultimately result in population extinction. In this thesis, I examine how behaviours, specifically conflict and competition over a resource and aspects of behaviour involved in sexual selection, can affect population densities, and what the implications are for the evolution and ecology of the populations in question. It is found that both behaviours related to individual conflict and mating strategies can have an effect at the level of the population, but that various factors, such as a feedback between selection and population densities or macroevolution caused by species extinctions, may act to limit the intensity of conflicts that we observe in nature.
Resumo:
Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.
Resumo:
Social groups are common across animal species. The reasons for grouping are straightforward when all individuals gain directly from cooperating. However, the situation becomes more complex when helping entails costs to the personal reproduction of individuals. Kin selection theory has offered a fruitful framework to explain such cooperation by stating that individuals may spread their genes not only through their own reproduction, but also by helping related individuals reproduce. However, kin selection theory also implicitly predicts conflicts when groups consist of non-clonal individuals, i.e. relatedness is less than one. Then, individual interests are not perfectly aligned, and each individual is predicted to favour the propagation of their own genome over others. Social insects provide a solid study system to study the interplay between cooperation and conflict. Breeding systems in social insects range from solitary breeding to eusocial colonies displaying complete division of reproduction between the fertile queen and the sterile worker caste. Within colonies, additional variation is provided by the presence of several reproductive individuals. In many species, the queen mates multiply, which causes the colony to consist of half-sib instead of full-sib offspring. Furthermore, in many species colonies contain multiple breeding queens, which further dilutes relatedness between colony members. Evolutionary biology is thus faced with the challenge to answer why such variation in social structure exists, and what the consequences are on the individual and population level. The main part of this thesis takes on this challenge by investing the dynamics of socially polymorphic ant colonies. The first four chapters investigate the causes and consequences of different social structures, using a combination of field studies, genetic analyses and laboratory experiments. The thesis ends with a theoretical chapter focusing on different social interactions (altruism and spite), and the evolution of harming traits. The main results of the thesis show that social polymorphism has the potential to affect the behaviour and traits of both individuals and colonies. For example, we found that genetic polymorphism may increase the phenotypic variation between individuals in colonies, and that socially polymorphic colonies may show different life history patterns. We also show that colony cohesion may be enhanced even in multiple-queen colonies through patterns of unequal reproduction between queens. However, the thesis also demonstrates that spatial and temporal variation between both populations and environments may affect individual and colony traits, to the degree that results obtained in one place or at one time may not be applicable in other situations. This opens up potential further areas of research to explain these differences.
Resumo:
The European aspen (Populus tremula) is a keystone species for biodiversity in boreal forests. However, the future of aspen may be threatened, because large aspens have mostly been removed from managed forests, whereas regeneration and the long-term persistence of mature trees are subjects of concern in protected areas. Aspen is a pioneer tree, and it can reproduce both sexually by seed and asexually by root suckers. Through asexual reproduction aspen forms clones, groups of genetically identical trees (ramets). In my thesis, I have studied the structure of aspen populations in terms of number, size, clonal and demographic properties. Additionally, I have investigated the emergence and survival of seedlings as well as the seed quantity and quality in crosses between the European and hybrid aspen. To study the regeneration and population structure, mature aspens were recorded in old-growth and managed forests in eastern Finland based on a large-scale inventory (11 400 ha). In addition, small aspen trees were surveyed on sample plots. Clonal structure was investigated both by morphological characters and by DNA-based markers (microsatellites). Seedling emergence and survival was studied with two sowing experiments. With crosses between European and hybrid aspens we wanted to study whether elevated temperatures due to climate change would benefit the different crosses of European and hybrid aspen unequally and thus affect the gene flow between the two species. The average volumes of mature aspen were 5.3 m3/ha in continuous old-growth, and 0.8 m3/ha in managed forests. Results indicate also that large aspen trees in managed forests are a legacy of the past less intensively managed forest landscapes. Long-term persistence of aspen in protected areas can only be secured by restoration measures creating sufficiently large gaps for regeneration. More emphasis should be given to sparing aspens in thinnings and to retaining of mature aspens in regeneration cutting in managed forests. Aspen was found to be spatially aggregated in the landscape. This could be explained by site type, disturbance history and / or limitations in seed dispersal. Clonal structure does not explain the spatial aggregation, since average size of the clones was only 2.3 ramets, and most clones (70 %) consisted of just one ramet. The small size of the clones suggests that most of them are relatively young. Therefore, sexual reproduction may be more common than has previously been thought. Seedling emergence was most successful in mineral soil especially, when the site had been burned. Only few seedlings occurred on humus. Survival of the seedlings was low, and strongly dependent on moisture, but also on seedbed conditions. The seeds were found to maintain their germinability longer than has earlier been thought to be possible. Interspecific crosses produced more seeds with higher quality than intraspecific crosses. When temperature was elevated, germination of hybrid aspen seeds increased more than seeds from P. tremula x P. tremula crosses. These results suggest that hybrid aspen may have a significant genetic impact on the European aspen, and this effect may become strengthened by climate warming.