2 resultados para High impedance ground plane(HIGP)

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terahertz (THz) technology has been generating a lot of interest because of the potential applications for systems working in this frequency range. However, to fully achieve this potential, effective and efficient ways of generating controlled signals in the terahertz range are required. Devices that exhibit negative differential resistance (NDR) in a region of their current-voltage (I-V ) characteristics have been used in circuits for the generation of radio frequency signals. Of all of these NDR devices, resonant tunneling diode (RTD) oscillators, with their ability to oscillate in the THz range are considered as one of the most promising solid-state sources for terahertz signal generation at room temperature. There are however limitations and challenges with these devices, from inherent low output power usually in the range of micro-watts (uW) for RTD oscillators when milli-watts (mW) are desired. At device level, parasitic oscillations caused by the biasing line inductance when the device is biased in the NDR region prevent accurate device characterisation, which in turn prevents device modelling for computer simulations. This thesis describes work on I-V characterisation of tunnel diode (TD) and RTD (fabricated by Dr. Jue Wang) devices, and the radio frequency (RF) characterisation and small signal modelling of RTDs. The thesis also describes the design and measurement of hybrid TD oscillators for higher output power and the design and measurement of a planar Yagi antenna (fabricated by Khalid Alharbi) for THz applications. To enable oscillation free current-voltage characterisation of tunnel diodes, a commonly employed method is the use of a suitable resistor connected across the device to make the total differential resistance in the NDR region positive. However, this approach is not without problems as the value of the resistor has to satisfy certain conditions or else bias oscillations would still be present in the NDR region of the measured I-V characteristics. This method is difficult to use for RTDs which are fabricated on wafer due to the discrepancies in designed and actual resistance values of fabricated resistors using thin film technology. In this work, using pulsed DC rather than static DC measurements during device characterisation were shown to give accurate characteristics in the NDR region without the need for a stabilisation resistor. This approach allows for direct oscillation free characterisation for devices. Experimental results show that the I-V characterisation of tunnel diodes and RTD devices free of bias oscillations in the NDR region can be made. In this work, a new power-combining topology to address the limitations of low output power of TD and RTD oscillators is presented. The design employs the use of two oscillators biased separately, but with the combined output power from both collected at a single load. Compared to previous approaches, this method keeps the frequency of oscillation of the combined oscillators the same as for one of the oscillators. Experimental results with a hybrid circuit using two tunnel diode oscillators compared with a single oscillator design with similar values shows that the coupled oscillators produce double the output RF power of the single oscillator. This topology can be scaled for higher (up to terahertz) frequencies in the future by using RTD oscillators. Finally, a broadband Yagi antenna suitable for wireless communication at terahertz frequencies is presented in this thesis. The return loss of the antenna showed that the bandwidth is larger than the measured range (140-220 GHz). A new method was used to characterise the radiation pattern of the antenna in the E-plane. This was carried out on-wafer and the measured radiation pattern showed good agreement with the simulated pattern. In summary, this work makes important contributions to the accurate characterisation and modelling of TDs and RTDs, circuit-based techniques for power combining of high frequency TD or RTD oscillators, and to antennas suitable for on chip integration with high frequency oscillators.