4 resultados para whole-cell and single-channel patch-clamp recordings
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Japanese isolates of Candidatus Liberibacter asiaticus have been shown to be clearly differentiated by simple sequence repeat (SSR) profiles at four loci. In this study, 25 SSR loci, including these four loci, were selected from the whole-genome sequence and were used to differentiate non-Japanese samples of Ca. Liberibacter asiaticus (13 Indian, 3 East Timorese, 1 Papuan and 8 Floridian samples). Out of the 25 SSR loci, 13 were polymorphic. Dendrogram analysis using SSR loci showed that the clusters were mostly consistent with the geographical origins of the isolates. When single nucleotide polymorphisms (SNPs) were searched around these 25 loci, only the upstream region of locus 091 exhibited polymorphism. Phylogenetic tree analysis of the SNPs in the upstream region of locus 091 showed that Floridian samples were clustered into one group as shown by dendrogram analysis using SSR loci. The differences in nucleotide sequences were not associated with differences in the citrus hosts (lime, mandarin, lemon and sour orange) from which the isolates were originally derived.
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of α-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (−) compared to the (+) form, indicating greater affinity for the (−) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (−) forms of α pinene. Moths with no odor conditioning showed an innate preference for (+)-α-pinene. This preference displayed by naıve moths was not significantly different from the preferences of moths conditioned on (+)-α-pinene. However, we found a significant difference in preference between moths conditioned on the (−) enantiomer compared to naıve moths and moths conditioned on (+)-α-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of α-pinene than different odors (e.g., phenylacetaldehyde versus (−)-α-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.