10 resultados para transport

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land application of piggery effluent (containing urine, faeces, water, and wasted feed) is under close scrutiny as a potential source of water resource contamination with phosphorus (P). This paper investigates two case studies of the impact of long-term piggery effluent-P application to soil. A Natrustalf (Sodosol) at P1 has received a net load of 3700 kg effluent P/ha over 19 years. The Haplustalf (Dermosol) selected (P2) has received a net load of 310 000 kg P/ha over 30 years. Total, bicarbonate extractable, and soluble P forms were determined throughout the soil profiles for paired (irrigated and unirrigated) sites at P1 and P2, as well as P sorption and desorption characteristics. Surface bicarbonate (PB, 0 - 0.05 m depth) and dilute CaCl2 extractable molybdate-reactive P (PC) have been significantly elevated by effluent irrigation (P1: PB unirrigated 23±1, irrigated 290±6; PC unirrigated 0.03±0.00, irrigated 23.9±0.2. P2: PB unirrigated 72±48, irrigated 3950±1960; PC unirrigated 0.7±0.0, irrigated 443±287 mg P/kg; mean±s.d.). Phosphorus enrichment to 1.5 m, detected as PB, was observed at P2. Elevated concentrations of CaCl2 extractable organic P forms (POC; estimated by non-molybdate reactive P in centrifuged supernatants) were observed from the soil surface of P1 to a depth of 0.4 m. Despite the extent of effluent application at both of these sites, only P1 displayed evidence of significant accumulation of POC. The increase in surface soil total P (0 - 0.05 m depth) due to effluent irrigation was much greater than laboratory P sorption (>25 times for P1; >57 times for P2) for a comparable range of final solution concentrations (desorption extracts ranged from 1-5 mg P/L for P1 and 50-80 mg P/L for P2). Precipitation of sparingly soluble P phases was evidenced in the soils of the P2 effluent application area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia communities are concerned about atrazine being detected in drinking water supplies. It is important to understand mechanisms by which atrazine is transported from paddocks to waterways if we are to reduce movement of agricultural chemicals from the site of application. Two paddocks cropped with grain sorghum on a Black Vertosol were monitored for atrazine, potassium chloride (KCl) extractable atrazine, desethylatrazine (DEA), and desisopropylatrazine (DIA) at 4 soil depths (0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m) and in runoff water and runoff sediment. Atrazine + DEA + DIA (total atrazine) had a half-life in soil of 16-20 days, more rapid dissipation than in many earlier reports. Atrazine extracted in dilute potassium chloride, considered available for weed control, was initially 34% of the total and had a half-life of 15-20 days until day 30, after which it dissipated rapidly with a half life of 6 days. We conclude that, in this region, atrazine may not pose a risk for groundwater contamination, as only 0.5% of applied atrazine moved deeper than 0.20 m into the soil, where it dissipated rapidly. In runoff (including suspended sediment) atrazine concentrations were greatest during the first runoff event (57 days after application) (85 μg/L) and declined with time. After 160 days, the total atrazine lost in runoff was 0.4% of the initial application. The total atrazine concentration in runoff was strongly related to the total concentration in soil, as expected. Even after 98% of the KCl-extractable atrazine had dissipated (and no longer provided weed control), runoff concentrations still exceeded the human health guideline value of 40 μg/L. For total atrazine in soil (0-0.05 m), the range for coefficient of soil sorption (Kd) was 1.9-28.4 mL/g and for soil organic carbon sorption (KOC) was 100-2184 mL/g, increasing with time of contact with the soil and rapid dissipation of the more soluble, available phase. Partition coefficients in runoff for total atrazine were initially 3, increasing to 32 and 51 with time, values for DEA being half these. To minimise atrazine losses, cultural practices that maximise rain infiltration, and thereby minimise runoff, and minimise concentrations in the soil surface should be adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control (<8), 15, 30, and 45 ppm, on the physiology and behavior of steers were recorded. The animals were held for 12 d under a micro-climate and stocking density similar to shipboard conditions experienced on voyages from Australia to the Middle East during the northern hemispheric summer. In bronchoalveolar lavage samples, ammonia increased (P < 0.05) macrophage activity in proportion to NH3 concentration and it increased (P < 0.05) neutrophil percentage at 30 and 45 ppm, indicating active pulmonary inflammation. It also increased (P < 0.05) lacrimation, nasal secretions and coughing, particularly at 45 ppm, indicating that the NH3 was irritating the mucous membranes of the eyes, nasal cavity and respiratory tract. Ammonia had no effect (P > 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The closure of abattoirs in Australia dictates that pigs will be transported over greater distances resulting in increased costs and reduced margins for producers. Factors contributing to reduced margins could include increased freight costs, reduced scale weight as a result of reduced killing out percentage and condemnations (due to injuries) plus possible increased deaths in transport. More information is needed in Australia on transport practices and mortalities to address knowledge deficiencies in our understanding of the welfare implications of road transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced On-farm Monitoring and Mitigation of Pesticide and Nutrient Transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter provides updated information on avocado fruit quality parameters, sensory perception and maturity, production and postharvest factors affecting quality defects, disinfestation and storage (including pre-conditioning), predicting outturn quality and processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of live fish is a crucial step to establish fish culture in captivity, and is especially challenging for species that have not been commonly cultured before, therefore transport and handling methods need to be optimized and tailored. This study describes the use of tuna tubes for small-scale transport of medium-sized pelagic fish from the Scombridae family. Tuna tubes are an array of vertical tubes that hold the fish, while fresh seawater is pumped up the tubes and through the fish mouth and gills, providing oxygen and removing wastes. In this study, 19 fish were captured using rod and line and 42% of the captured fish were transported alive in the custom-designed tuna tubes to an on-shore holding tank: five mackerel tuna (Euthynnus affinis) and three leaping bonito (Cybiosarda elegans). Out of these, just three (15.8% of total fish) acclimatized to the tank's condition. Based on these results, we discuss an improved design of the tuna tubes that has the potential to increase survival rates and enable a simple and low cost method of transporting of live pelagic fish.