67 resultados para Near-Duplicate Detection
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Polymyxa graminis was detected in the roots of barley plants from a field near Wondai, Queensland, in 2009. P. graminis was identified by characteristic sporosori in roots stained with trypan blue. The presence of P. graminis f. sp. tepida (which is hosted by wheat and oats as well as barley) in the roots was confirmed by specific PCR tests based on nuclear ribosomal DNA. P. graminis is the vector of several damaging soil-borne virus diseases of cereals in the genera Furovirus, Bymovirus and Pecluvirus. No virus particles were detected in sap extracts from leaves of stunted barley plants with leaf chlorosis and increased tillering. Further work is required to determine the distribution of P. graminis in Australian grain crops and the potential for establishment and spread of the exotic soil-borne viruses that it vectors.
Resumo:
Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies.
Resumo:
Reliable age information is vital for effective fisheries management, yet age determinations are absent for many deepwater sharks as they cannot be aged using traditional methods of growth bands counts. An alternative approach to ageing using near infrared spectroscopy (NIRS) was investigated using dorsal fin spines, vertebrae and fin clips of three species of deepwater sharks. Ages were successfully estimated for the two dogfish, Squalus megalops and Squalus montalbani, and NIRS spectra were correlated with body size in the catshark, Asymbolus pallidus. Correlations between estimated-ages of the dogfish dorsal fin spines and their NIRS spectra were good, with S. megalops R2=0.82 and S. montalbani R2=0.73. NIRS spectra from S. megalops vertebrae and fin clips that have no visible growth bands were correlated with estimated-ages, with R2=0.89 and 0.76, respectively. NIRS has the capacity to non-lethally estimate ages from fin spines and fin clips, and thus could significantly reduce the numbers of sharks that need to be lethally sampled for ageing studies. The detection of ageing materials by NIRS in poorly calcified deepwater shark vertebrae could potentially enable ageing of this group of sharks that are vulnerable to exploitation.
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.
Resumo:
Traps baited with synthetic aggregation pheromones of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus davidsoni Dobson and fermenting bread dough were used to identify the fauna and monitor the seasonal abundance of Carpophilus spp. in insecticide treated peach and nectarine orchards in the Gosford area of coastal New South Wales. In four orchards 67 178 beetles were trapped during 1994–1995, with C. davidsoni (82%) and Carpophilus gaveni (Dobson) (12.2%) dominating catches. Five species (C. hemipterus, C. mutilatus, Carpophilus marginellus Motschulsky, Carpophilus humeralis (F.) and an unidentified species) each accounted for 0.2–3.2% of trapped beetles. Carpophilus davidsoni was most abundant during late September–early October but numbers declined rapidly during October, usually before insecticides were applied. Spring populations of Carpophilus spp. were very large in 1994–1995 (1843–2588 per trap per week). However, despite a preharvest population decline of approximately 95% and 2–11 applications of insecticide, 14–545 beetles per trap per week (above the arbitrary fruit damage threshold of 10 beetles per trap per week) were recorded during the harvest period and fruit damage occurred at three of the four orchards. Lower preharvest populations in 1995–1996 (< 600 per trap per week) and up to six applications of insecticide resulted in < 10 beetles per trap per week during most of the harvest period and minimal or no fruit damage. The implications of these results for the integrated management of Carpophilus spp. in coastal and inland areas of southeastern Australia are discussed.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction.
Resumo:
An offtype has been identified from micropropagated Lady Finger bananas (Musa spp., AAB group, Pome subgroup) that is characterised by its slow growth and poor bunch size. Bunch weights were approximately 25% those of normal Lady Finger plants and all of the fruit produced was unmarketable. This particular offtype is the most commonly encountered from micropropagated Lady Finger plants and, in 2 instances, blocks of 3000 and 1500 plants were entirely comprised of this single offtype. Detection of offtype plants was possible during establishment and growth of plants in the glasshouse by the presence of chlorotic streaks in the leaves. In more severe cases the streaks coalesced into chlorotic patches that developed thin, necrotic areas that eventually produced holes or splits in the leaves. Symptom expression was not ameliorated by the addition of fertiliser and even though symptoms were similar to severe Ca and B deficiency, both normal and offtype plants had similar levels of these elements in the leaves. The offtype plants were also slow growing in the glasshouse and produced significantly (P<0.05) smaller pseudostems and leaves than normal plants. Offtype plants could be readily detected after 4 weeks deflasking using the presence of chlorotic streaks in the leaves as the main selection criterion. Maximum discrimination was possible between weeks 5–7 and at the 6-leaf stage when all of the offtypes could be detected.
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
A 5′ Taq nuclease assay utilising minor groove binder technology and targeting the 16S rRNA gene was designed to detect Pasteurella multocida (the causative agent of fowl cholera) in swabs collected from poultry. The assay was first evaluated using pure cultures. The assay correctly identified four P. multocida taxonomic type strains, 18 P. multocida serovar reference strains and 40 Australian field isolates (17 from poultry, 11 from pigs and 12 from cattle). Representatives of nine other Pasteurella species, 26 other bacterial species (18 being members of the family Pasteurellaceae) and four poultry virus isolates did not react in the assay. The assay detected a minimum of approximately 10 cfu of P. multocida per reaction. Of 79 poultry swabs submitted to the laboratory for routine bacteriological culture, 17 were positive in the 5′ Taq nuclease assay, but only 10 were positive by culture. The other 62 swabs were negative for P. multocida by both 5′ Taq nuclease assay and culture. The assay is suitable for use in diagnosing fowl cholera, is more rapid than bacteriological culture, and may also have application in diagnosing P. multocida infections in cattle and pigs.
Resumo:
Aims: To investigate the occurrence and levels of Arcobacter spp. in pig effluent ponds and effluent-treated soil. Methods and Results: A Most Probable Number (MPN) method was developed to assess the levels of Arcobacter spp. in seven pig effluent ponds and six effluent-treated soils, immediately after effluent irrigation. Arcobacter spp. levels in the effluent ponds varied from 6.5 × 105 to 1.1 × 108 MPN 100 ml-1 and in freshly irrigated soils from 9.5 × 102 to 2.8 × 104 MPN g-1 in all piggery environments tested. Eighty-three Arcobacter isolates were subjected to an abbreviated phenotypic test scheme and examined using a multiplex polymerase chain reaction (PCR). The PCR identified 35% of these isolates as Arcobacter butzleri, 49% as Arcobacter cryaerophilus while 16% gave no band. All 13 nonreactive isolates were subjected to partial 16S rDNA sequencing and showed a high similarity (>99%) to Arcobacter cibarius. Conclusions: A. butzleri, A. cryaerophilus and A. cibarius were isolated from both piggery effluent and effluent-irrigated soil, at levels suggestive of good survival in the effluent pond. Significance and Impact of the Study: This is the first study to provide quantitative information on Arcobacter spp. levels in piggery effluent and to associate A. cibarius with pigs and piggery effluent environments.
Resumo:
Aims: The aim of this work was to develop a rapid molecular test for the detection of the Chlamydiaceae family, irrespective of the species or animal host. Methods and Results: The method described herein is a polymerase chain reaction targeting the 16S rRNA gene of the Chlamydiaceae family, and the results demonstrate that the test reacts with five reference Chlamydiaceae but none of the 19 other bacterial species or five uninfected animal tissues tested. The results also indicate the enhanced sensitivity of this test when compared with conventional culture or serology techniques. This is demonstrated through parallel testing of six real clinical veterinary cases and confirmatory DNA sequence analysis. Conclusions, Significance and Impact of the Study: This test can be used by veterinary diagnostic laboratories for rapid detection of Chlamydiaceae in veterinary specimens, with no restriction of chlamydial species or animal host. The test does not differentiate chlamydial species, and if required, speciation must be carried out retrospectively using alternate methods. However, for the purpose of prescribing therapy for chlamydiosis, this test would be an invaluable laboratory tool.
Resumo:
A competitive enzyme-linked immunosorbent assay (cELISA) based on a broadly conserved, species-specific, B-cell epitope within the C terminus of Babesia bigemina rhoptry-associated protein 1a was validated for international use. Receiver operating characteristic analysis revealed 16% inhibition as the threshold for a negative result, with an associated specificity of 98.3% and sensitivity of 94.7%. Increasing the threshold to 21% increased the specificity to 100% but modestly decreased the sensitivity to 87.2%. By using 21% inhibition, the positive predictive values ranged from 90.7% (10% prevalence) to 100% (95% prevalence) and the negative predictive values ranged from 97.0% (10% prevalence) to 48.2% (95% prevalence). The assay was able to detect serum antibody as early as 7 days after intravenous inoculation. The cELISA was distributed to five different laboratories along with a reference set of 100 defined bovine serum samples, including known positive, known negative, and field samples. The pairwise concordance among the five laboratories ranged from 100% to 97%, and all kappa values were above 0.8, indicating a high degree of reliability. Overall, the cELISA appears to have the attributes necessary for international application.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.