26 resultados para Dynamics of color deconfinement

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spawning stock dynamics of 2 commercially important penaeid prawns, Metapenaeus bennettae and Penaeus esculentus, from 9 stations in Moreton Bay (27°15'S, 153°15'E), southeast Queensland, Australia, were examined. An egg production index (EPI), based on the relative abundance, proportion that were mature or ripe, and size of adult females, was used as a measure of egg production in the 2 populations. Egg production by M. bennettae was 20 to 30 higher than that by P. esculentus, extended over 7 to 8 mo each year and peaked from February to March (late summer to early autumn). Monthly patterns in egg production by M. bennettae varied between years. In contrast, P. esculentus produced most of its eggs in a single, clearly defined peak in October (spring), although production continued to March (early autumn) each year. The seasonal onset and subsequent decline in maturation in P. esculentus were rapid. Egg production by M. bennettae was several times higher at the 5 northern stations than at the 4 southern stations and negatively correlated with salinity during the main spawning period. Egg production by P. esculentus was less varied among stations and positively correlated with depth. P. esculentus appeared more likely than M. bennettae to experience recruitment overfishing because (1) the peak spawning period for P. esculentus was dependent on relatively few adult females spawning over a short period, and (2) the selectivity of trawl nets used in the bay was much higher for P. esculentus spawners than for those of M. bennettae. Compared with more northern populations, P. esculentus in Moreton Bay matured at a larger size, had lower incidences of insemination and mature or ripe females, and had a shorter spawning period. These results suggest the likelihood of recruitment overfishing in P. esculentus increases with increasing latitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of Heteropogon contortus (black speargrass) populations were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This subset included 2 landscape positions and 3 stocking rates in both native pasture and legume-oversown native pasture. Severe drought conditions throughout much of the study necessitated ongoing adjustments to the original stocking rates and, as a result, drought was the major influence on the dynamics of H. contortus populations. Plant density and basal area in the silver-leaved ironbark landscape were consistently higher than those in the narrow-leaved ironbark landscape. There was limited evidence of any impact by either light or moderate stocking rate but there was evidence of an impact at the heaviest stocking rate. There was minimal impact of legume oversowing. Relatively large fluctuations in plant density occurred during this study resulting from the death of existing plants, due mainly to drought, and seedling recruitment. Similarly, there were relatively large fluctuations in basal area caused mainly by changes in plant size. Rates for turnover of plant numbers were relatively high whereas plant turnover rates of basal areas were relatively low. Regular seedling recruitment appeared necessary to ensure the persistence of this species. Despite the high turnover, populations were maintained at reasonable levels indicating the overall resilience of H. contortus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of the unpalatable Aristida spp. (wiregrasses) were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This paper reports the results from these treatments which included 2 land classes (silver-leaved and narrowleaved ironbark), 3 stocking rates (0.3, 0.6 and 0.9 beasts/ha) in both native pasture and legumeoversown native pasture, all in the absence of fire. Changes in plant density and basal area of Aristida spp. reflected differences in both the survival and size of existing plants together with a large seedling recruitment in 1991. Two different taxa of Aristida spp. were distinguished; however, there were no clear differences in the response of these 2 taxa to the treatments. Grazing had the greatest impact on population dynamics through reducing basal area as stocking rate increased. Neither landscape position nor legume oversowing had a major impact on Aristida spp. The results suggest that populations of Aristida spp. will be highest under light grazing and that seedling recruitment may be episodic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a study to identify those factors which control the persistence of the Subtropical legume Stylosanthes hippocampoides, formerly S. guianensis cv. Oxley (fine stem stylo). The dynamics of S. hippocampoides populations was recorded in permanent quadrats at 2 stocking rates in a grazing study conducted between 1987 and 1992 in south-eastern Queensland. Density of mature plants fluctuated between 10 and 60 plants/m(2) during the 5 years with the major contributing factors being variations in seedling recruitment and survival, which, in turn, reflected the size of the soil seed bank and seasonal rainfall. Plant density was consistently higher at the lower stocking rate of 1 beast/1.5 ha compared with 1 beast/1 ha; however, the effect of stocking rate was minor compared with fluctuation due to seasonal variation in rainfall. The maximum life span of the original plants exceeded 5 years, while the survival of seedling cohorts was strongly impacted by seasonal rainfall. Total exclosure from grazing during summer increased the size of the soil seed bank although a precise time period during summer was not identified, while grazing at the lower stocking pressure produced the same outcome. It was concluded that the large seasonal variation that occurs in S. hippocampoides density is driven by large seasonal variation in seedling recruitment, which, in turn, is influenced by the size of the soil seed bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wild European rabbits are a serious problem to agriculture in Australia, with an estimated annual cost of A$ 113 million. Biological control agents (myxomatosis and rabbit haemorrhagic disease virus) have caused large and sustained declines in rabbit populations throughout Australia. A simulation model incorporates these diseases as well as warren destruction as methods of controlling rabbit populations in Queensland, north eastern Australia. These diseases reduced populations by 90-99% and the combination of these and warren destruction led to 100% control in simulations at six sites across southern Queensland. Increasing monthly pasture growth by 15% had little effect on simulated populations whereas a 15% decrease reduced populations by 0-50%. An increase in temperature of 2.5 °C would lead to a 15-60% decrease in populations. These effects suggest that climate change will lead to a decrease in the population of rabbits in Queensland and a retraction in the northern limit of their distribution in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-running datasets from aerial surveys of kangaroos (Macropus giganteus, Macropus [uliginosus, Macropus robustus and Macropus rufus) across Queensland, New South Wales and South Australia have been analysed, seeking better predictors of rates of increase which would allow aerial surveys to be undertaken less frequently than annually. Early models of changes in kangaroo numbers in response to rainfall had shown great promise, but much variability. We used normalised difference vegetation index (NDVI) instead, reasoning that changes in pasture condition would provide a better predictor than rainfall. However, except at a fine scale, NDVI proved no better; although two linked periods of rainfall proved useful predictors of rates of increase, this was only in some areas for some species. The good correlations reported in earlier studies were a consequence of data dominated by large droughtinduced adult mortality, whereas over a longer time frame and where changes between years are less dramatic, juvenile survival has the strongest influence on dynamics. Further, harvesting, density dependence and competition with domestic stock are additional and important influences and it is now clear that kangaroo movement has a greater influence on population dynamics than had been assumed. Accordingly, previous conclusions about kangaroo populations as simple systems driven by rainfall need to be reassessed. Examination of this large dataset has permitted descriptions of shifts in distribution of three species across eastern Australia, changes in dispersion in response to rainfall, and an evaluation of using harvest statistics as an index of density and harvest rate. These results have been combined into a risk assessment and decision theory framework to identify optimal monitoring strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of Heteropogon contortus and Stylosanthes scabra cv. Seca populations were studied in a subset of treatments in an extensive grazing study conducted in central Queensland between 1988 and 2001. These treatments were 4 stocking rates in native pasture and 2 of these stocking rates in legume oversown and supplement/spring burning treatments. For the 1999-2000 summer, population data for H. contortus in 5 of these native pasture and supplement/burning treatments were compared with those for an additional burnt treatment. Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 24 to 61%. Increasing stocking rate from 5 to 2 ha/steer in native pasture reduced H. contortus plant density. Increasing stocking rate reduced seedling recruitment as a result of its effect on soil seedbanks. Seedling recruitment was the major determinant of change in plant density, although some individual H. contortus plants did survive throughout the study. Burning in spring 1999, particularly at light stocking rate, promoted seedling recruitment above that in both unburnt native and legume oversown pasture and resulted in increased H. contortus plant density. In the legume oversown treatments, S. scabra cv. Seca density increased rapidly from 15 plants/m2 in 1988 to 140 plants/m2 in 2001 following a lag phase between 1988 and 1993. This increased S. scabra density was associated with an eventual decline in H. contortus plant density through reduced seedling recruitment. It was concluded that H. contortus population density is sustainable at stocking rates of 4 and 5 ha/steer (30% pasture utilisation) and that spring burning at light stocking rate can promote H. contortus populations. Increasing densities of S. scabra need to be managed to prevent its dominance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tribolium castaneum (Herbst) has been used as a model organism to develop and test important ecological and evolutionary concepts and is also a major pest of grain and grain products globally. This beetle species is assumed to be a good colonizer of grain storages through anthropogenic movement of grain, and active dispersal by flight is considered unlikely. Studies using T. castaneum have therefore used confined or walking insects. We combine an ecological study of dispersal with an analysis of gene flow using microsatellites to investigate the spatiotemporal dynamics and adult flight of T. castaneum in an ecological landscape in eastern Australia. Flying beetles were caught in traps at grain storages and in fields at least 1 km from the nearest stored grain at regular intervals for an entire year. Significantly more beetles were trapped at storages than in fields, and almost no beetles were caught in native vegetation reserves many kilometres from the nearest stored grain. Genetic differentiation between beetles caught at storages and in fields was low, indicating that although T. castaneum is predominantly aggregated around grain storages, active dispersal takes place to the extent that significant gene flow occurs between them, mitigating founder effects and genetic drift. By combining ecological and molecular techniques, we reveal much higher levels of active dispersal through adult flight in T. castaneum than previously thought. We conclude that the implications of adult flight to previous and future studies on this model organism warrant consideration.