8 resultados para Denis de Icaza, Amelia

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus diseases cause serious yield and quality losses in field grown cucurbit crops worldwide. In Australia, the main viruses of cucurbits are Papaya ringspot virus (PRSV), Squash mosaic virus (SqMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). Plants infected early have severely distorted fruit. High infection incidences, of ZYMV and PRSV in crops cause losses of marketable fruit of up to 100% and infected crops are often abandoned. Two new alternative hosts of ZYMV were identified, the native cucurbit Cucumis maderaspatanus and wild legume Rhyncosia minima. No new alternative hosts of PRSV, SqMV or WMV were found in Western Australia or Queensland. Seed transmission of ZYMV (0.7%) was found in seedlings grown from ZYMV-infected fruit of zucchini but not of pumpkin. None was detected with PRSV or SqMV in zucchini or pumpkin seedlings, respectively. ZYMV spread to pumpkins by aphids was greater downwind than upwind of a virus source. Delaying sowing by 2 weeks decreased ZYMV spread. Millet non-host barriers between pumpkin plantings slowed ZYMV infection. Host resistance gene (zym) in cucumber cultivars was effective against ZYMV. Pumpkin cultivars with resistance gene (Zym) became infected under high virus pressure but leaf symptoms were milder and infected plants higher yielding with more market-acceptable fruit than those without Zym. Most zucchini cultivars with Zym developed severe leaf and fruit symptoms. ZYMV, PRSV, WMV and SqMV spread readily from infected to healthy cucurbit plants by direct leaf contact. ZYMV survives and remains infective on diverse surfaces for up to 6 hours but can be inactivated by some disinfectants. Phylogenetic analysis indicates at least three separate introductions of ZYMV into Australia, with new introductions rarely occurring. ZYMV isolates clustered into three groups according to collection location i) Kununurra, ii) Northern Territory and iii) Carnarvon, Qld and Vic. A multiplex Real-Time PCR was developed which distinguished between the three groups of Australian isolates. Integrated disease management (IDM) strategies for virus diseases of vegetable cucurbit crops grown in the field were improved incorporating the new information gathered. These strategies are aimed at causing using minimal extra expense, labour demands and disruption to normal practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrated viral disease management in vegetable crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protecting the Australian citrus industry from HLB (greening) disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

• To undertake an audit of management systems used for tomato spotted wilt virus (TSWV) in greenhouse and field production with the aim of improving disease management determining knowledge gaps in virus-vector relationships. • To investigate the basis for the development of resistance breaking strains of TSWV in capsicums and apply this to virus management in capsicums. • To further develop effective virus management systems in vegetable cucurbit crops. Aspects to be investigated include value of barrier crops, non-insecticide products and cultivar tolerance to virus. • To further develop and assess the adoption and impact of integrated viral disease management systems in field grown and protected cropping systems as part of the vegetable industry development plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing molecular diagnostics for the detection of strawberry viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.