6 resultados para Default

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a crop's available soil water (CLL) and thus reducing the soil's plant-available water capacity (PAWC). This proposal was tested by simulation of 33 farmers' paddocks in south-western Queensland and north-western New South Wales. The simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of 0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil's PAWC. In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3-0.5 m soil layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers below 0.5 m depth were calculated as a function of these soils' 0.3-0.5 m CLL values as well as of soil depth plus one of the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs were described by an ESP-dependent function. In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3-0.5 m soil layer. However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results obtained from simulations based on the measured CLL values. This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff, recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations to SSCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A project co-funded by Meat & Livestock Australia and the Queensland Government is putting new life into the search for biocontrol agents for prickly acacia (Acacia nilotica), a Weed of National Significance in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To develop approaches to the evaluation of programmes whose strategic objectives are to halt or slow weed spread. Location: Australia. Methods: Key aspects in the evaluation of weed containment programmes are considered. These include the relevance of models that predict the effects of management intervention on spread, the detection of spread, evidence for containment failure and metrics for absolute or partial containment. Case studies documenting either near-absolute (Orobanche ramosa L., branched broomrape) or partial (Parthenium hysterophorus (L.) King and Robinson, parthenium) containment are presented. Results: While useful for informing containment strategies, predictive models cannot be employed in containment programme evaluation owing to the highly stochastic nature of realized weed spread. The quality of observations is critical to the timely detection of weed spread. Effectiveness of surveillance and monitoring activities will be improved by utilizing information on habitat suitability and identification of sites from which spread could most compromise containment. Proof of containment failure may be difficult to obtain. The default option of assuming that a new detection represents containment failure could lead to an underestimate of containment success, the magnitude of which will depend on how often this assumption is made. Main conclusions: Evaluation of weed containment programmes will be relatively straightforward if containment is either absolute or near-absolute and may be based on total containment area and direct measures of containment failure, for example, levels of dispersal, establishment and reproduction beyond (but proximal to) the containment line. Where containment is only partial, other measures of containment effectiveness will be required. These may include changes in the rates of detection of new infestations following the institution of interventions designed to reduce dispersal, the degree of compliance with such interventions, and the effectiveness of tactics intended to reduce fecundity or other demographic drivers of spread. © 2012 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter provides updated information on avocado fruit quality parameters, sensory perception and maturity, production and postharvest factors affecting quality defects, disinfestation and storage (including pre-conditioning), predicting outturn quality and processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change