45 resultados para Animals as carriers of disease
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting
Resumo:
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.
Resumo:
To the Editor—We thank Bonten and Mevius for their interest in our systematic review [1]. In their letter, they disagree with our finding that whole-bacterium transmission (WBT) of expanded-spectrum cephalosporin-resistant (ESCR) Escherichia coli between food-producing animals and humans likely contributes to the burden of human extraintestinal infections. We respectfully argue against 2 assumptions that underlie their assertion.
Resumo:
Multidrug-resistant Escherichia colt sequence type 131 (51131) has recently emerged as a globally distributed cause of extraintestinal infections in humans. Diverse factors have been investigated as explanations for ST131's rapid and successful dissemination, including transmission through animal contact and consumption of food, as suggested by the detection of ST131 in a number of nonhuman species. For example, ST131 has recently been identified as a cause of clinical infection in companion animals and poultry, and both host groups have been confirmed as faecal carriers of ST131. Moreover, a high degree of similarity has been shown among certain ST131 isolates from humans, companion animals, and poultry based on resistance characteristics and genomic background and human and companion animal ST131 isolates tend to exhibit similar virulence genotypes. However, most ST131 isolates from poultry appear to possess specific virulence genes that are typically absent from human and companion animal isolates, including genes associated with avian pathogenic E. coli. Since the number of reported animal and food-associated ST131 isolates is quite small, the role of nonhuman host species in the emergence, dissemination, and transmission of ST131 to humans remains unclear. Nevertheless, given the profound public health importance of the emergent ST131 clonal group, even the limited available evidence indicates a pressing need for further careful study of this significant question.
Resumo:
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
Resumo:
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Resumo:
Viruses play a key role in the complex aetiology of bovine respiratory disease (BRD). Bovine viral diarrhoea virus 1 (BVDV-1) is widespread in Australia and has been shown to contribute to BRD occurrence. As part of a prospective longitudinal study on BRD, effects of exposure to BVDV-1 on risk of BRD in Australian feedlot cattle were investigated. A total of 35,160 animals were enrolled at induction (when animals were identified and characteristics recorded), held in feedlot pens with other cattle (cohorts) and monitored for occurrence of BRD over the first 50 days following induction. Biological samples collected from all animals were tested to determine which animals were persistently infected (PI) with BVDV-1. Data obtained from the Australian National Livestock Identification System database were used to determine which groups of animals that were together at the farm of origin and at 28 days prior to induction (and were enrolled in the study) contained a PI animal and hence to identify animals that had probably been exposed to a PI animal prior to induction. Multi-level Bayesian logistic regression models were fitted to estimate the effects of exposure to BVDV-1 on the risk of occurrence of BRD.Although only a total of 85 study animals (0.24%) were identified as being PI with BVDV-1, BVDV-1 was detected on quantitative polymerase chain reaction in 59% of cohorts. The PI animals were at moderately increased risk of BRD (OR 1.9; 95% credible interval 1.0-3.2). Exposure to BVDV-1 in the cohort was also associated with a moderately increased risk of BRD (OR 1.7; 95% credible interval 1.1-2.5) regardless of whether or not a PI animal was identified within the cohort. Additional analyses indicated that a single quantitative real-time PCR test is useful for distinguishing PI animals from transiently infected animals.The results of the study suggest that removal of PI animals and/or vaccination, both before feedlot entry, would reduce the impact of BVDV-1 on BRD risk in cattle in Australian feedlots. Economic assessment of these strategies under Australian conditions is required. © 2016 Elsevier B.V.
Resumo:
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced to Australia in 1995 for the control of wild rabbits. Initial outbreaks greatly reduced rabbit numbers and the virus has continued to control rabbits to varying degrees in different parts of Australia. However, recent field evidence suggests that the virus may be becoming less effective in those areas that have previously experienced repeated epizootics causing high mortality. There are also reports of rabbits returning to pre-1995 density levels, Virus and host can be expected to co-evolve. The host will develop resistance to the virus with the virus subsequently changing to overcome that resistance. It has been 12 years since the release of RHDV and it is an opportune time to examine where the dynamic currently stands between RHDV and rabbits. Laboratory challenge tests have indicated that resistance to RHDV has developed to different degrees in populations throughout Australia. In one population a low dose (1:25 dilution) of Czech strain RHDV failed to infect a single susceptible rabbit, yet infected a low to high (up to 73%) percentage across other populations tested. Different selection pressures are present in these populations and will be driving the level of resistance being seen. The mechanisms and genetics behind the development of resistance are also important as the on-going use of RHDV as a control tool in the management of rabbits relies on our understanding of factors influencing the efficacy of the virus. Understanding how resistance has developed may provide clues on how best to use the virus to circumvent these mechanisms. Similarly, it will help in managing populations that have yet to develop high levels of resistance.
Resumo:
1. The successful introduction of the red fox Vulpes vulpes into Australia in the 1870s has had dramatic and deleterious impacts on both native fauna and agricultural production. Historical accounts detail how the arrival of foxes in many areas coincided with the local demise of native fauna. Recent analyses suggest that native fauna can be successfully reintroduced to their former ranges only if foxes have been controlled, and several replicated removal experiments have confirmed that foxes are the major agents of extirpation of native fauna. Predation is the primary cause of losses, but competition and transmission of disease may be important for some species. 2. In agricultural landscapes, fox predation on lambs can cause losses of 1–30%; variation is due to flock size, health and management, as well as differences in the timing and duration of lambing and the density of foxes. 3. Fox control measures include trapping, shooting, den fumigation and exclusion fencing; baiting using the toxin 1080 is the most commonly employed method. Depending on the baiting strategy, habitat and area covered, baiting can reduce fox activity by 50–97%. We review patterns of baiting in a large sheep-grazing region in central New South Wales, and propose guidelines to increase landholder awareness of baiting strategies, to concentrate and coordinate bait use, and to maximize the cost-effectiveness of baiting programs. 4. The variable reduction in fox density within the baited area, together with the ability of the fox to recolonize rapidly, suggest that current baiting practices in eastern Australia are often ineffective, and that reforms are required. These might include increasing landholder awareness and involvement in group control programs, and the use of more efficient broadscale techniques, such as aerial baiting.
Resumo:
An outbreak of equine influenza (EI) caused by influenza A H3N8 subtype virus occurred in the Australian states of Queensland and New South Wales in August 2007. Infection in the Australian horse population was associated with the introduction of infection by horses from overseas. The first case of EI in Queensland was detected on 25 August 2007 at an equestrian sporting event. Infection subsequently spread locally and to other clusters through horse movements prior to the implementation of an official standstill. There were five main clusters of infected properties during this outbreak and several outliers, which were investigated to find the potential mechanism of disease spread. To contain the outbreak, Queensland was divided into infection status zones, with different movement controls applied to each zone. Vaccination was implemented strategically in infected areas and within horse subpopulations. Control and eventual eradication of EI from Queensland was achieved through a combination of quarantine, biosecurity measures, movement control, rapid diagnostic testing and vaccination.
Resumo:
Menangle virus (MenPV) is a zoonotic paramyxovirus capable of causing disease in pigs and humans. It was first isolated in 1997 from stillborn piglets at a commercial piggery in New South Wales, Australia, where an outbreak of reproductive disease occurred. Neutralizing antibodies to MenPV were detected in various pteropid bat species in Australia and fruit bats were suspected to be the source of the virus responsible for the outbreak in pigs. However, previous attempts to isolate MenPV from various fruit bat species proved fruitless. Here, we report the isolation of MenPV from urine samples of the black flying fox, Pteropus alecto, using a combination of improved procedures and newly established bat cell lines. The nucleotide sequence of the bat isolate is 94% identical to the pig isolate. This finding provides strong evidence supporting the hypothesis that the MenPV outbreak in pigs originated from viruses in bats roosting near the piggery. © 2012 Printed in Great Britain.
Resumo:
Rabbit haemorrhagic disease is a major tool for the management of introduced, wild rabbits in Australia. However, new evidence suggests that rabbits may be developing resistance to the disease. Rabbits sourced from wild populations in central and southeastern Australia, and domestic rabbits for comparison, were experimentally challenged with a low 60 ID50 oral dose of commercially available Czech CAPM 351 virus - the original strain released in Australia. Levels of resistance to infection were generally higher than for unselected domestic rabbits and also differed (0-73% infection rates) between wild populations. Resistance was lower in populations from cooler, wetter regions and also low in arid regions with the highest resistance seen within zones of moderate rainfall. These findings suggest the external influences of non-pathogenic calicivirus in cooler, wetter areas and poor recruitment in arid populations may influence the development rate of resistance in Australia.
Resumo:
Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Ruppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S.agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S.agalactiae; genotyping of selected S.agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S.agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Strong statistical evidence was found for differences in tolerance to natural infections of Tobacco streak virus (TSV) in sunflower hybrids. Data from 470 plots involving 23 different sunflower hybrids tested in multiple trials over 5 years in Australia were analysed. Using a Bayesian Hierarchical Logistic Regression model for analysis provided: (i) a rigorous method for investigating the relative effects of hybrid, seasonal rainfall and proximity to inoculum source on the incidence of severe TSV disease; (ii) a natural method for estimating the probability distributions of disease incidence in different hybrids under historical rainfall conditions; and (iii) a method for undertaking all pairwise comparisons of disease incidence between hybrids whilst controlling the familywise error rate without any drastic reduction in statistical power. The tolerance identified in field trials was effective against the main TSV strain associated with disease outbreaks, TSV-parthenium. Glasshouse tests indicate this tolerance to also be effective against the other TSV strain found in central Queensland, TSV-crownbeard. The use of tolerant germplasm is critical to minimise the risk of TSV epidemics in sunflower in this region. We found strong statistical evidence that rainfall during the early growing months of March and April had a negative effect on the incidence of severe infection with greatly reduced disease incidence in years that had high rainfall during this period.