8 resultados para ANTIBIOTIC PROPHYLAXIS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Objectives: The aim of this study was to determine the antimicrobial resistance patterns of 125 Campylobacter jejuni and 27 Campylobacter coli isolates from 39 Queensland broiler farms. Methods: Two methods, a disc diffusion assay and an agar-based MIC assay, were used. The disc diffusion was performed and interpreted as previously described (Huysmans MB, Turnidge JD. Disc susceptibility testing for thermophilic campylobacters. Pathology 1997; 29: 209–16), whereas the MIC assay was performed according to CLSI (formerly NCCLS) methods and interpreted using DANMAP criteria. Results: In both assays, no C. jejuni or C. coli isolates were resistant to ciprofloxacin or chloramphenicol, no C. coli were resistant to nalidixic acid, and no C. jejuni were resistant to erythromycin. In the MIC assay, no C. jejuni isolate was resistant to nalidixic acid, whereas three isolates (2.4%) were resistant in the disc assay. The highest levels of resistance of the C. jejuni isolates were recorded for tetracycline (19.2% by MIC and 18.4% by disc) and ampicillin (19.2% by MIC and 17.6% by disc). The C. coli isolates gave very similar results (tetracycline resistance 14.8% by both MIC and disc; ampicillin resistance 7.4% by MIC and 14.8% by disc). Conclusions: This work has shown that the majority of C. jejuni and C. coli isolates were susceptible to the six antibiotics tested by both disc diffusion and MIC methods. Disc diffusion represents a suitable alternative methodology to agar-based MIC methods for poultry Campylobacter isolates.
Resumo:
Respiratory bacterial pathogens in pigs are currently treated with antibiotics. Intervet - Schering Plough markets an antibiotic called Nurflor (Florfenicol) targeting respiratory pathogens. This project tests the effectiveness of this antibiotic against a series of respiratory pathogens. 6 isolates will be tested per serovar/strain and the isolates will be from 4 different farms using MIC testing. The sensitivity of Florfenicol will be compared to sensitivity of the organisms to Tilmicosin and Amoxicillin. Development of resistance to certain antibiotics have been reported, so it is important to have alternative antibiotics available to treat the respiratory pathogens on farms.
Resumo:
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.
Resumo:
To the Editor—We thank Bonten and Mevius for their interest in our systematic review [1]. In their letter, they disagree with our finding that whole-bacterium transmission (WBT) of expanded-spectrum cephalosporin-resistant (ESCR) Escherichia coli between food-producing animals and humans likely contributes to the burden of human extraintestinal infections. We respectfully argue against 2 assumptions that underlie their assertion.
Resumo:
Solvent extracts of cultures of the fungus Paecilomyces varioti are toxic to sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Different components of the culture extracts were isolated and bioassayed with L. cuprina. The component with most toxicity was purified and identified from its proton magnetic resonance spectrum as viriditoxin, a known antibiotic metabolite of the fungus. The insecticidal properties of viriditoxin were then evaluated. Mean LCso values for first instar larvae of organophosphate susceptible and resistant strains of L. cuprina were 7.5 and 8.4 ppm respectively. Pilot implant trials in sheep demonstrated that the compound provided protection for 9-17 weeks against both strains of L. cuprina. No adverse effects on the trial sheep were detected.
Resumo:
Two human deaths caused by Australian bat lyssavirus (ABL) infection have been reported since 1996. Information was obtained from 205 persons (mostly adults from south Brisbane and the South Coast of Queensland), who reported potential ABL exposure to the Brisbane Southside Public Health Unit from November 1,1996, to January 31, 1999. Volunteer animal handlers accounted for 39% of potential exposures, their family members for 12%, professional animal handlers for 14%, community members who intentionally handled bats for 31%, and community members with contacts initiated by bats for 4%. The prevalence of Lyssavirus detected by fluorescent antibody test in 366 sick, injured, or orphaned bats from the area was 6%. Sequelae of exposure, including the requirement for expensive postexposure prophylaxis, may be reduced by educating bat handlers and the public of the risks involved in handling Australian bats.
Resumo:
In this study, nasal swabs taken from multiparous sows at weaning time or from sick pigs displaying symptoms of Glasser's disease from farms in Australia [date not given] were cultured and analysed by polymerase chain reaction (PCR). Within each genotype detected on a farm, representative isolates were serotyped by gel diffusion (GD) testing or indirect haemagglutination (IHA) test. Isolates which did not react in any of the tests were regarded as non-typable and were termed serovar NT. Serovars 1, 5, 12, 13 and 14 were classified as highly pathogenic; serovars 2, 4 and 15 being moderately pathogenic; serovar 8 being slightly pathogenic and serovars 3, 6, 7, 9 and 11 being non-pathogenic. Sows were inoculated with the strain of Haemophilus parasuis (serovars 4, 6 and 9 from Farms 1, 2 and 4, respectively) used for controlled challenge 3 and 5 weeks before farrowing. Before farrowing the sows were divided into control and treatment groups. Five to seven days after birth, the piglets of the treatment group were challenged with a strain from the farm which had were used to vaccinate the sows. The effectiveness of the controlled exposure was evaluated by number of piglets displaying clinical signs possibly related to infection, number of antibiotic treatments and pig mortality. Nasal swabs of sick pigs were taken twice a week to find a correlation to infection. A subsample of pigs was weighed after leaving the weaning sheds. The specificity of a realtime PCR amplifying the infB gene was evaluated with 68 H. parasuis isolates and 36 strains of closely related species. 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were also tested with the realtime PCR, and the results compared with culture and a conventional PCR. The farm experiments showed that none of the controlled challenge pigs showed any signs of illness due to Glasser's disease, although the treatment groups required more antibiotics than the controls. A total of 556 H. parasuis isolates were genotyped, while 150 isolates were serotyped. H. parasuis was detected on 19 of 20 farms, including 2 farms with an extensive history of freedom from Glasser's disease. Isolates belonging to serovars regarded as potentially pathogenic were obtained from healthy pigs at weaning on 8 of the 10 farms with a history of Glasser's disease outbreaks. Sampling 213 sick pigs yielded 115 isolates, 99 of which belonged to serovars that were either potentially pathogenic or of unknown pathogenicity. Only 16 isolates from these sick pigs were of a serovar known to be non-pathogenic. Healthy pigs also had H. parasuis, even on farms free of Glasser's disease. The realtime PCR gave positive results for all 68 H. parasuis isolates and negative results for all 36 non-target bacteria. When used on the clinical material from experimental infections, the realtime PCR produced significantly more positive results than the conventional PCR (165 compared to 86).
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.