99 resultados para Dripping irrigation
Resumo:
Aims: To investigate the occurrence and levels of Arcobacter spp. in pig effluent ponds and effluent-treated soil. Methods and Results: A Most Probable Number (MPN) method was developed to assess the levels of Arcobacter spp. in seven pig effluent ponds and six effluent-treated soils, immediately after effluent irrigation. Arcobacter spp. levels in the effluent ponds varied from 6.5 × 105 to 1.1 × 108 MPN 100 ml-1 and in freshly irrigated soils from 9.5 × 102 to 2.8 × 104 MPN g-1 in all piggery environments tested. Eighty-three Arcobacter isolates were subjected to an abbreviated phenotypic test scheme and examined using a multiplex polymerase chain reaction (PCR). The PCR identified 35% of these isolates as Arcobacter butzleri, 49% as Arcobacter cryaerophilus while 16% gave no band. All 13 nonreactive isolates were subjected to partial 16S rDNA sequencing and showed a high similarity (>99%) to Arcobacter cibarius. Conclusions: A. butzleri, A. cryaerophilus and A. cibarius were isolated from both piggery effluent and effluent-irrigated soil, at levels suggestive of good survival in the effluent pond. Significance and Impact of the Study: This is the first study to provide quantitative information on Arcobacter spp. levels in piggery effluent and to associate A. cibarius with pigs and piggery effluent environments.
Resumo:
This study reports on the use of naturally occurring F-specific coliphages, as well as spiked MS-2 phage, to evaluate a land-based effluent treatment/reuse system and an effluent irrigation scheme. Both the natural phages and the spiked MS-2 phage indicated that the effluent treatment/reuse system (FILTER - Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) achieved a reduction in phage levels over the treatment system by one to two log10. FILTER reduced natural F-specific phage numbers from around 103 to below 102 100-ml-1 and the spiked phage from 105 to around 104 100-ml-1 (incoming compared with outgoing water). In the effluent irrigation scheme, phage spiked into the holding ponds dropped from 106 to 102 100-ml-1 after 168 h (with no detectable levels of natural F-specific phage being found prior to spiking). Only low levels of the spiked phage (102 gm-1) could be recovered from soil irrigated with phage-spiked effluent (at 106 phage 100 ml-1) or from fruits (around 102 phage per fruit) that had direct contact with soil which had been freshly irrigated with the same phage-spiked effluent.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0-3 month lead time, compared to rainfall distribution.
Resumo:
Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
The effect of fungal endophyte (Neotyphodium lolii) infection on the performance of perennial ryegrass (Lolium perenne) growing under irrigation in a subtropical environment was investigated. Seed of 4 cultivars, infected with standard (common toxic or wild-type) endophyte or the novel endophyte AR1, or free of endophyte (Nil), was sown in pure swards, which were fertilised with 50 kg N/ha.month. Seasonal and total yield, persistence, and rust susceptibility were assessed over 3 years, along with details of the presence of endophyte and alkaloids in plant shoots. Endophyte occurrence in tillers in both the standard and AR1 treatments was above 95% for Bronsyn and Impact throughout and rose to that level in Samson by the end of the second year. Meridian AR1 only reached 93% while, in the standard treatment, the endophyte had mostly died before sowing. Nil Zendophyte treatments carried an average of ?0.6% infection throughout. Infection of the standard endophyte was associated with increased dry matter (DM) yields in all 3 years compared with no endophyte. AR1 also significantly increased yields in the second and third years. Over the full 3 years, standard and AR1 increased yields by 18% and 11%, respectively. Infection with both endophytes was associated with increased yields in all 4 seasons, the effects increasing in intensity over time. There was 27% better persistence in standard infected plants compared with Nil at the end of the first year, increasing to 198% by the end of the experiment, while for AR1 the improvements were 20 and 134%, respectively. The effect of endophyte on crown rust (Puccinia coronata) infection was inconsistent, with endophyte increasing rust damage on one occasion and reducing it on another. Cultivar differences in rust infection were greater than endophyte effects. Plants infected with the AR1 endophyte had no detectable ergovaline or lolitrem B in leaf, pseudostem, or dead tissue. In standard infected plants, ergovaline and lolitrem B were highest in pseudostem and considerably lower in leaf. Dead tissue had very low or no detectable ergovaline but high lolitrem B concentrations. Peramine concentration was high and at similar levels in leaf and pseudostem, but not detectable in dead material. Concentration was similar in both AR1 and standard infected plants. Endophyte presence appeared to have a similar effect in the subtropics as has been demonstrated in temperate areas, in terms of improving yields and persistence and increasing tolerance of plants to stress factors.
Resumo:
DairyMod, EcoMod, and the SGS Pasture Model are mechanistic biophysical models developed to explore scenarios in grazing systems. The aim of this manuscript was to test the ability of the models to simulate net herbage accumulation rates of ryegrass-based pastures across a range of environments and pasture management systems in Australia and New Zealand. Measured monthly net herbage accumulation rate and accumulated yield data were collated from ten grazing system experiments at eight sites ranging from cool temperate to subtropical environments. The local climate, soil, pasture species, and management (N fertiliser, irrigation, and grazing or cutting pattern) were described in the model for each site, and net herbage accumulation rates modelled. The model adequately simulated the monthly net herbage accumulation rates across the range of environments, based on the summary statistics and observed patterns of seasonal growth, particularly when the variability in measured herbage accumulation rates was taken into account. Agreement between modelled and observed growth rates was more accurate and precise in temperate than in subtropical environments, and in winter and summer than in autumn and spring. Similarly, agreement between predicted and observed accumulated yields was more accurate than monthly net herbage accumulation. Different temperature parameters were used to describe the growth of perennial ryegrass cultivars and annual ryegrass; these differences were in line with observed growth patterns and breeding objectives. Results are discussed in the context of the difficulties in measuring pasture growth rates and model limitations.
Resumo:
This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.
Resumo:
In semi-arid areas such as western Nebraska, interest in subsurface drip irrigation (SDI) for corn is increasing due to restricted irrigation allocations. However, crop response quantification to nitrogen (N) applications with SDI and the environmental benefits of multiple in-season (IS) SDI N applications instead of a single early-season (ES) surface application are lacking. The study was conducted in 2004, 2005, and 2006 at the University of Nebraska-Lincoln West Central Research and Extension Center in North Platte, Nebraska, comparing two N application methods (IS and ES) and three N rates (128, 186, and 278 kg N ha(-1)) using a randomized complete block design with four replications. No grain yield or biomass response was observed in 2004. In 2005 and 2006, corn grain yield and biomass production increased with increasing N rates, and the IS treatment increased grain yield, total N uptake, and gross return after N application costs (GRN) compared to the ES treatment. Chlorophyll meter readings taken at the R3 corn growth stage in 2006 showed that less N was supplied to the plant with ES compared to the IS treatment. At the end of the study, soil NO3-N masses in the 0.9 to 1.8 m depth were greater under the IS treatment compared to the ES treatment. Results suggested that greater losses of NO3-N below the root zone under the ES treatment may have had a negative effect on corn production. Under SDI systems, fertigating a recommended N rate at various corn growth stages can increase yields, GRN, and reduce NO3-N leaching in soils compared to concentrated early-season applications.
Resumo:
The effects of recycled water (effluent) on 8 tropical grasses growing in 100-L bags of sand were studied in Murrumba Downs, just north of Brisbane in southern Queensland (27.4°S, 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass 'Winter Green') and C. dactylon x C. transvaalensis hybrid ('Tifgreen'), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass '38824'), Stenotaphrum secundatum (buffalograss 'Palmetto'), Eremochloa ophiuroides (centipedegrass 'Centec') and Zoysia japonica (zoysiagrass 'ZT-11'). From May 2002 to June 2003, control plots were irrigated with potable water and fertilised monthly. Plots irrigated with effluent received no fertiliser from May to August 2002 (deficient phase), complete fertilisers at control rates from September to December 2002 (recovery phase) and nitrogen (N) only at control rates from January to June 2003 (supplementary phase). In October 2002, the average shoot weight of plants from the effluent plots was 4% of that from potable plots, with centipedegrass less affected than the other species (relative growth of 20%). Shoot N concentrations declined by 40% in the effluent plots from May to August 2002 (1.8 ± 0.1%) along with phosphorus (P, 0.46 ± 0.02%), potassium (K, 1.6 ± 0.2%), sulfur (S, 0.28 ± 0.02%) and manganese (Mn, 19 ± 2 mg/kg) concentrations. Only the N and Mn concentrations were below the optimum for grasses. The grasses grew satisfactorily when irrigated with effluent if it was supplemented with N. Between January and June 2003 the average weight of shoots from the effluent plots was 116% of the weight of shoots from the control plots. Shoot nutrient concentrations were also similar in the 2 regimes at this time. The recycled water supplied 23% of the N required for maximum shoot growth, 80-100% of the P and K, and 500-880% of the S, calcium and magnesium. The use of recycled water represents savings in irrigation and fertiliser costs, and reductions in the discharge of N and P to local waterways. Effluent is currently about 50% of the cost of potable water with a saving of about AU$8000/ha.year for a typical sporting field.
Resumo:
In the subtropics of Australia, irrigated temperate species are the key to reliable cool season feed on dairy farms. Persistence of perennial species is a major limitation to achieving reliable production from irrigated areas and yearly sowings of annual ryegrasses have replaced them as the most productive cool season forage production system in the subtropics. This series of experiments evaluated the yield, and resistance to rust damage, of commercially available cultivars and breeders' lines of annually sown ryegrasses (Lolium multiflorum, L. rigidum, L. x boucheanum and L perenne) in pure, nitrogen-fertilised swards under irrigation in the subtropics over a 22-year period. Barberia and Aristocrat 2 were the most adapted cultivars for subtropical conditions, producing high yields (119 and 114% of mean yield, respectively) and demonstrating the least rust damage. Newer selections from New Zealand, South African, United States of America and European breeding programs are performing better under subtropical conditions than older cultivars, particularly if a component of the selection process has been conducted in that environment. Cultivars such as Passerei Plus, Crusader, Hulk, Status and Warrior are examples of this process, producing between 105 and 115% of mean yield. Yields of annual ryegrass cultivars, which have been available or still are available for sale in Australia, ranged from 14-30 t/ha DM, depending on cultivar, site and seasonal conditions. Yields were lower at the site, which had inferior soil structure and drainage. Up to 50% of yield was produced in the 3 winter months. There was a trend towards improved yields and better tolerance of crown rust from experimental lines in the subtropics, as breeders strive for wider adaptation. Around 70% of the variation in total yield of annual ryegrass and 50 and 60% of the variation in winter and spring yield, respectively, were significantly explained by cultivar, site and climatic variables in autumn, winter and spring. While level of rust damage had no effect on total or seasonal yields, it affected the amount of green leaf available in spring. Under subtropical conditions, winter, spring and overall (autumn to mid-summer) temperatures influenced the- development of rust, which along with cultivar, accounted for 46% of the variation in rust damage. Cultivars showed a range of adaptation, with some performing well only under adverse conditions, some being well adapted to all conditions and some which performed well only under favoured conditions. Cultivars with high winter yields were most suited to subtropical conditions and included Aristocrat 2 (now released as CM 108), Barberia, Warrior, Crusader, Status, Passerei Plus and Hulk. Short growing season types such as Winter Star and T Rex performed well in winter but achieved lower total production, and long season cultivars such as Flanker rarely achieved their potential because of unfavourable conditions in late summer.
Resumo:
The quality of tropical grasses is a major limitation to animal production in tropical and subtropical areas. This is mainly associated with the lower digestibility because C4 grasses have higher fibre levels. Any improvement in quality would require a reduction in the lignin and an increase in the digestion of the neutral detergent fibre content of these plants (Clark and Wilson 1993). Kikuyu (Pennisetum clandestinum) is an important grass for the dairy and beef industries of the subtropics of Australia, South Africa and New Zealand (Mears 1970). Increased digestibility could substantially improve animal production in these industries. These experiments investigated the variation in agronomic and quality of natural populations selected from diverse regions within Australia. Runners of 14 kikuyu selections were collected by project staff or local agronomists from areas considered to have grown kikuyu for over 30 years while Whittet and Noonan were established by seed. Entries were established as single spaced plants on a 1.5 m grid in a randomised block with 3 replicates and evaluated under irrigation at Mutdapilly (brown podsol) and Wollongbar (red ferrosol). Foliage height, forage production and runner yield were assessed along with crude protein (CP), in vitro dry matter digestibility (IVDMD), metabolisable energy (ME), acid detergent fibre (ADF) and neutral detergent fibre (NDF) content of the leaf in autumn, winter and spring.
Resumo:
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers' incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870-1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum - 31 C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mill deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m(2)) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m(2)). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m(2)) between treatments; generally the grain yield (g/1.5 m(2)) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m(2)) than that on PRBs (mean 815 g/1.5 m(2)) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m(2)) in this system of PRBs. The growth and the grain yield (y in g/m(2)) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1. 1x -308; r(2) = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m(2)). Manual tillage did not affect growth and grain yield of rice (g/m(2); g/1.5 m(2)), either on PRB or on Flat land.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.