26 resultados para Sweet condensed milk
Resumo:
Identification and analysis of allelic variation in carotenoid biosynthesis genes present in sweet corn germplasm for eye health.
Resumo:
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2(sh2) breeding populations. Ten diverse inbred lines developed from genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P <0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard's similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.
Resumo:
With 6 tables Abstract The objectives of this study were to evaluate the importance of heterosis for agronomic and quality traits in shrunken (sh2) sweet corn, assess the usefulness of combining ability to predict the value of parents and their crosses for further genetic improvement and examine whether genetic divergence can predict heterosis or F1 performance. Ten genetically diverse shrunken (sh2) sweet corn inbred lines were used to generate 45 F1s. F1s and parents were evaluated for agronomic and quality traits across environments. Heterosis was more important for yield-related traits than it was for ear aspects and eating quality. Heterosis for most traits was mostly dependent on dominance genetic effects of parental lines. Parents and F1per se performance were highly correlated with general combining ability effects and mid-parent values, respectively, for most traits. Hybrid performance for flavour and plant height was significantly but weakly related to simple sequence repeat (SSR)-based genetic distance (GD). Phenotypic distance (PD), estimated from phenotypic traits was correlated with heterosis for total soluble solids, ear length and flavour. © 2012 State of Queensland.
Resumo:
Carotenoids are responsible for the yellow color of sweet corn (Zea mays var. saccharata), but are also potentially the source of flavor compounds from the cleavage of carotenoid molecules. The carotenoid-derived volatile, -ionone, was identified in both standard yellow sweet corn (Hybrix5) and a zeaxanthin-enhanced experimental variety (HZ) designed for sufferers of macular degeneration. As -ionone is highly perceivable at extremely low concentration by humans, it was important to confirm if alterations in carotenoid profile may also affect flavor volatiles. The concentration of -ionone was most strongly correlated (R2 > 0.94) with the -arm carotenoids, -carotene, -cryptoxanthin, and zeaxanthin, and to a lesser degree (R2 = 0.90) with the α-arm carotenoid, zeinoxanthin. No correlation existed with either lutein (R2 = 0.06) or antheraxanthin (R2 = 0.10). Delaying harvest of cobs resulted in a significant increase of both carotenoid and -ionone concentrations, producing a 6-fold increase of ?-ionone in HZ and a 2-fold increase in Hybrix5, reaching a maximum of 62g/kg FW and 24g/kg FW, respectively.
Resumo:
Immediate and residual effects of two lengths of low plane of nutrition (PON) on the synthesis of milk protein and protein fractions were studied at the Mutdapilly Research Station, in south-east Queensland. Thirty-six multiparous Holstein-Friesian cows, between 46 and 102 days in milk (DIM) initially, were used in a completely randomised design experiment with three treatments. All cows were fed on a basal diet of ryegrass pasture (7.0 kg DM/cow.day), barley-sorghum concentrate mix (2.7 kg DM/cow.day) and a canola meal-mineral mix (1.3 kg DM/cow.day). To increase PON, 5.0 kg DM/cow.day supplemental maize and forage sorghum silage was added to the basal diet. The three treatments were (C) high PON (basal diet + supplemental silage); (L9) low PON (basal diet only) for a period of 9 weeks; and (L3) low PON (basal diet only) for a period of 3 weeks. The experiment comprised three periods (1) covariate – high PON, all groups (5 weeks), (2) period of low PON for either 3 weeks (L3) or 9 weeks (L9), and (3) period of high PON (all groups) to assess ability of cows to recover any production lost as a result of treatments (5 weeks). The low PON treatment periods for L3 and L9 were end-aligned so that all treatment groups began Period 3 together. Although there was a significant effect of L9 on yields of milk, protein, fat and lactose, and concentrations of true protein, whey protein and urea, these were not significantly different from L3. There were no residual effects of L3 or L9 on protein concentration or nitrogen distribution after 5 weeks of realimentation. There was no significant effect of low PON for 3 or 9 weeks on casein concentration or composition.
Resumo:
Zeaxanthin, along with its isomer lutein, are the major carotenoids contributing to the characteristic colour of yellow sweet-corn. From a human health perspective, these two carotenoids are also specifically accumulated in the human macula, and are thought to protect the photoreceptor cells of the eye from blue light oxidative damage and to improve visual acuity. As humans cannot synthesise these compounds, they must be accumulated from dietary components containing zeaxanthin and lutein. In comparison to most dietary sources, yellow sweet-corn (Zea mays var. rugosa) is a particularly good source of zeaxanthin, although the concentration of zeaxanthin is still fairly low in comparison to what is considered a supplementary dose to improve macular pigment concentration (2 mg/person/day). In our present project, we have increased zeaxanthin concentration in sweet-corn kernels from 0.2 to 0.3 mg/100 g FW to greater than 2.0 mg/100 g FW at sweet-corn eating-stage, substantially reducing the amount of corn required to provide the same dosage of zeaxanthin. This was achieved by altering the carotenoid synthesis pathway to more than double total carotenoid synthesis and to redirect carotenoid synthesis towards the beta-arm of the pathway where zeaxanthin is synthesised. This resulted in a proportional increase of zeaxanthin from 22% to 70% of the total carotenoid present. As kernels increase in physiological maturity, carotenoid concentration also significantly increases, mainly due to increased synthesis but also due to a decline in moisture content of the kernels. When fully mature, dried kernels can reach zeaxanthin and carotene concentrations of 8.7 mg/100 g and 2.6 mg/100 g, respectively. Although kernels continue to increase in zeaxanthin when harvested past their normal harvest maturity stage, the texture of these 'over-mature' kernels is tough, making them less appealing for fresh consumption. Increase in zeaxanthin concentration and other orange carotenoids such as p-carotene also results in a decline in kernel hue angle of fresh sweet-corn from approximately 90 (yellow) to as low as 75 (orange-yellow). This enables high-zeaxanthin sweet-corn to be visually-distinguishable from standard yellow sweet-corn, which is predominantly pigmented by lutein.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.
Resumo:
This report presents the process and outcomes of a five year project, which employed genetics and breeding approach for integrating disease resistance,agronomy and quality traits that enhances sustainable productivity improvement in sweet corn production. The report outlines a molecular markers based approach to introgress quantitative traits loci that are believed to contribute to resistance to downy mildew, a potentially devastating disease that threatens sweet corn and other similar crops. It also details the approach followed to integrate resistances for other major diseases such as southern rust (caused by Puccinia polysora Underw), Northern Corn Leaf Blight (Exserohilum turcicum) with improved agronomy and eating quality. The report explains the importance of heterosis (hybrid vigour) and combining ability in the development of useful sweet corn hybrids. It also explains the relevance of parental performance to predict its breeding value and the performance of its hybrids.
Resumo:
Exposure to hot environments affects milk yield (MY) and milk composition of pasture and feed-pad fed dairy cows in subtropical regions. This study was undertaken during summer to compare MY and physiology of cows exposed to six heat-load management treatments. Seventy-eight Holstein-Friesian cows were blocked by season of calving, parity, milk yield, BW, and milk protein (%) and milk fat (%) measured in 2 weeks prior to the start of the study. Within blocks, cows were randomly allocated to one of the following treatments: open-sided iron roofed day pen adjacent to dairy (CID) + sprinklers (SP); CID only; non-shaded pen adjacent to dairy + SP (NSD + SP); open-sided shade cloth roofed day pen adjacent to dairy (SCD); NSD + sprinkler (sprinkler on for 45 min at 1100 h if mean respiration rate >80 breaths per minute (NSD + WSP)); open-sided shade cloth roofed structure over feed bunk in paddock + 1 km walk to and from the dairy (SCP + WLK). Sprinklers for CID + SP and NSD + SP cycled 2 min on, 12 min off when ambient temperature >26°C. The highest milk yields were in the CID + SP and CID treatments (23.9 L cow−1 day−1), intermediate for NSD + SP, SCD and SCP + WLK (22.4 L cow−1 day−1), and lowest for NSD + WSP (21.3 L cow−1 day−1) (P < 0.05). The highest (P < 0.05) feed intakes occurred in the CID + SP and CID treatments while intake was lowest (P < 0.05) for NSD + WSP and SCP + WLK. Weather data were collected on site at 10-min intervals, and from these, THI was calculated. Nonlinear regression modelling of MY × THI and heat-load management treatment demonstrated that cows in CID + SP showed no decline in MY out to a THI break point value of 83.2, whereas the pooled MY of the other treatments declined when THI >80.7. A combination of iron roof shade plus water sprinkling throughout the day provided the most effective control of heat load.