3 resultados para nonlinear boundary conditions
em Universidade Complutense de Madrid
Resumo:
We extend previous papers in the literature concerning the homogenization of Robin type boundary conditions for quasilinear equations, in the case of microscopic obstacles of critical size: here we consider nonlinear boundary conditions involving some maximal monotone graphs which may correspond to discontinuous or non-Lipschitz functions arising in some catalysis problems.
Resumo:
We analyze the behavior of solutions of the Poisson equation with homogeneous Neumann boundary conditions in a two-dimensional thin domain which presents locally periodic oscillations at the boundary. The oscillations are such that both the amplitude and period of the oscillations may vary in space. We obtain the homogenized limit problem and a corrector result by extending the unfolding operator method to the case of locally periodic media.
Resumo:
In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.