3 resultados para VHDL Quartus
em Universidade Complutense de Madrid
Resumo:
We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.
Resumo:
Hoy día vivimos en la sociedad de la tecnología, en la que la mayoría de las cosas cuentan con uno o varios procesadores y es necesario realizar cómputos para hacer más agradable la vida del ser humano. Esta necesidad nos ha brindado la posibilidad de asistir en la historia a un acontecimiento sin precedentes, en el que la cantidad de transistores era duplicada cada dos años, y con ello, mejorada la velocidad de cómputo (Moore, 1965). Tal acontecimiento nos ha llevado a la situación actual, en la que encontramos placas con la capacidad de los computadores de hace años, consumiendo muchísima menos energía y ocupando muchísimo menos espacio, aunque tales prestaciones quedan un poco escasas para lo que se requiere hoy día. De ahí surge la idea de comunicar placas que se complementan en aspectos en las que ambas se ven limitadas. En nuestro proyecto desarrollaremos una interfaz s oftware/hardware para facilitar la comunicación entre dos placas con distintas prestaciones, a saber, una Raspberry Pi modelo A 2012 y una FPGA Spartan XSA3S1000 con placa extendida XStend Board V3.0. Dicha comunicación se basará en el envío y recepción de bits en serie, y será la Raspberry Pi quien marque las fases de la comunicación. El proyecto se divide en dos partes: La primera parte consiste en el desarrollo de un módulo para el kernel de Linux, que se encarga de gestionar las entradas y salidas de datos de la Raspberry Pi cuando se realizan las pertinentes llamadas de write o read. Mediante el control de los GPIO y la gestión de las distintas señales, se realiza la primera fase de la comunicación. La segunda parte consiste en el desarrollo de un diseño en VHDL para la FPGA, mediante el cual se pueda gestionar la recepción, cómputo y posterior envío de bits, de forma que la Raspberry Pi pueda disponer de los datos una vez hayan sido calculados. Ambas partes han sido desarrolladas bajo licencias libres (GPL) para que estén disponibles a cualquier persona interesada en el desarrollo y que deseen su reutilización.
Resumo:
A lo largo de la historia, nuestro planeta ha atravesado numerosas y diferentes etapas. Sin embargo, desde finales del cretácico no se vivía un cambio tan rápido como el actual. Y a la cabeza del cambio, nosotros, el ser humano. De igual manera que somos la causa, debemos ser también la solución, y el análisis a gran escala de la tierra está siendo un punto de interés para la comunidad científica en los últimos años. Prueba de ello es que, cada vez con más frecuencia, se lanzan gran cantidad de satélites cuya finalidad es el análisis, mediante fotografías, de la superficie terrestre. Una de las técnicas más versátiles para este análisis es la toma de imágenes hiperespectrales, donde no solo se captura el espectro visible, sino numerosas longitudes de onda. Suponen, eso sí un reto tecnológico, pues los sensores consumen más energía y las imágenes más memoria, ambos recursos escasos en el espacio. Dado que el análisis se hace en tierra firme, es importante una transmisión de datos eficaz y rápida. Por ello creemos que la compresión en tiempo real mediante FPGAs es la solución idónea, combinando un bajo consumo con una alta tasa de compresión, posibilitando el análisis ininterrumpido del astro en el que vivimos. En este trabajo de fin de grado se ha realizado una implementación sobre FPGA, utilizando VHDL, del estándar CCSDS 123. Este está diseñado para la compresión sin pérdida de imágenes hiperespectrales, y permite una amplia gama de configuraciones para adaptarse de manera óptima a cualquier tipo de imagen. Se ha comprobado exitosamente la validez de la implementación comparando los resultados obtenidos con otras implementaciones (software) existentes. Las principales ventajas que presentamos aquí es que se posibilita la compresión en tiempo real, obteniendo además un rendimiento energético muy prometedor. Estos resultados mejoran notablemente los de una implementación software del algoritmo, y permitirán la compresión de las imágenes a bordo de los satélites que las toman.