2 resultados para Three-Dimension, Fractional Advection-Diffusion Equation, Fourier Analysis, Convergence, Stability

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators