3 resultados para Third order nonlinear ordinary differential equation
em Universidade Complutense de Madrid
Resumo:
We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrodinger equation to 2 + 1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed.
Resumo:
We present a theoretical analysis of the effects of the environment on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to static disorder and (ii) phonon-induced scattering of the carriers between the localized states, resulting in hopping conductivity. A nonlinear Pauli master equation for populations of localized states is used to describe the hopping transport and calculate the electric current as a function of the applied bias. We demonstrate that, although the electronic gap in the density of states shrinks as the disorder increases, the voltage gap in the I-V characteristics becomes wider. A simple physical explanation of this effect is provided.
Resumo:
In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.