3 resultados para Quasi-Uniform Space

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.