2 resultados para Locally Compact Group
em Universidade Complutense de Madrid
Resumo:
Let S(M) be the ring of (continuous) semialgebraic functions on a semialgebraic set M and S*(M) its subring of bounded semialgebraic functions. In this work we compute the size of the fibers of the spectral maps Spec(j)1:Spec(S(N))→Spec(S(M)) and Spec(j)2:Spec(S*(N))→Spec(S*(M)) induced by the inclusion j:N M of a semialgebraic subset N of M. The ring S(M) can be understood as the localization of S*(M) at the multiplicative subset WM of those bounded semialgebraic functions on M with empty zero set. This provides a natural inclusion iM:Spec(S(M)) Spec(S*(M)) that reduces both problems above to an analysis of the fibers of the spectral map Spec(j)2:Spec(S*(N))→Spec(S*(M)). If we denote Z:=ClSpec(S*(M))(M N), it holds that the restriction map Spec(j)2|:Spec(S*(N)) Spec(j)2-1(Z)→Spec(S*(M)) Z is a homeomorphism. Our problem concentrates on the computation of the size of the fibers of Spec(j)2 at the points of Z. The size of the fibers of prime ideals "close" to the complement Y:=M N provides valuable information concerning how N is immersed inside M. If N is dense in M, the map Spec(j)2 is surjective and the generic fiber of a prime ideal p∈Z contains infinitely many elements. However, finite fibers may also appear and we provide a criterium to decide when the fiber Spec(j)2-1(p) is a finite set for p∈Z. If such is the case, our procedure allows us to compute the size s of Spec(j)2-1(p). If in addition N is locally compact and M is pure dimensional, s coincides with the number of minimal prime ideals contained in p. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.