17 resultados para Locally Compact Group
em CaltechTHESIS
Resumo:
In studying a proposed carbon monoxide reduction scheme an attempt has been made to synthesize bifunctional group 8 transition metal carbonyl complexes containing intramolecular nucleophiles. The incorporation of alkoxide nucleophiles through cyclopentadienyl ligands was hoped to encourage attack on carbonyl ligands thereby forming cyclic metallaesters. The attempts to synthesize these substituted cyclopentadienyl group 8 transition metal complexes have thus far been unsuccessful.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.
In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.
This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.
Resumo:
A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether “quantization commutes with reduction.” Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kähler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kähler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds.
In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kähler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or “admissible”, values of momentum.
We first propose a reduction procedure for the prequantum geometric structures that “covers” symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems.
We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces.
Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees with its usual decomposition by irreducible representations, and so proves that quantization and reduction do indeed commute in this context.
A significant omission from the proof is the construction of an inner product on the space of polarized sections, and a discussion of its behavior under reduction. In the concluding chapter of the thesis, we suggest some ideas for future work in this direction.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
This thesis describes the preparation, characterization, and application of welldefined single-component group ten salicylaldimine complexes for the polymerization of ethylene to high molecular weight materials as well as the copolymerization of ethylene and functionalized olefins. After an initial introduction to the field, Chapter 2 describes the preparation of PPh3 complexes that contain a series of modified salicylaldimine and naphthaldimine ligands. Such complexes were activated for polymerization by the addition of cocatalysts such as Ni(COD)2 or B(C6F5)3. As the steric demand of the ligand set increased-the molecular weight, polymerization activity, and lifetime of the catalyst was observed to increase. In fact, complexes containing "bulky" ligands, such as the [Anthr,HSal] ligand (2.5), were found to be highly-active single component complexes for the polymerization of ethylene. Model hydrido compound were prepared-allowing for a better understanding of both the mechanism of polymerization and one mode of decomposition.
Chapter 3 describes the effect which additives play on neutral NiII polymerization catalysts such as 2.5. The addition of excess ethers, esters, ketones, anhydrides, alcohols, and water do not deactivate the catalysts for polymerization. However, the addition of excess acid, thiols, and phosphines was observed to shut-down catalysis. Since excess phosphine was found to inhibit catalysis, "phosphine-free" complexes, such as the acetonittile complex (3.26), were prepared. The acetonitrile complex was found to be the most active neutral polymerization catalyst prepared to date.
Chapter 4 outlines the use of catalyst 2.5 and 3.26 for the preparation of linear functionalized copolymers containing alcohols, esters, anhydrides, and ethers. Copolymers can be prepared with γ-functionalized-α-olefins, functionalized norbornenes, and functionalized tricyclononenes, with up to 30 mol% comonomer incorporation.
Chapter 5 outlines the preparation of a series of PtII alkyl/olefin salicylaldimine complexes which serve as models for the active species in the NiII-catalyzed polymerization process. Understanding the nature of the M-olefin interaction as a the electronic and steric properties of the salicylaldimine ligand is varied has allowed for a number of predictions about the design of future polymerization systems.
Resumo:
Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.
Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.
A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.
Resumo:
General Relativity predicts the existence of gravitational waves, which carry information about the physical and dynamical properties of their source. One of the many promising sources of gravitational waves observable by ground-based instruments, such as in LIGO and Virgo, is the coalescence of two compact objects (neutron star or black hole). Black holes and neutron stars sometimes form binaries with short orbital periods, radiating so strongly in gravitational waves that they coalesce on astrophysically short timescales. General Relativity gives precise predictions for the form of the signal emitted by these systems. The most recent searches for theses events used waveform models that neglected the effects of black hole and neutron star spin. However, real astrophysical compact objects, especially black holes, are expected to have large spins. We demonstrate here a data analysis infrastructure which achieves an improved sensitivity to spinning compact binaries by the inclusion of spin effects in the template waveforms. This infrastructure is designed for scalable, low-latency data analysis, ideal for rapid electromagnetic followup of gravitational wave events.
Resumo:
The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. Since their discovery full-length, RAG1 and RAG2 have been difficult to purify, and core derivatives are shown to be most active when purified from adherent 293-T cells. However, the protein yield from adherent 293-T cells is limited. Here we develop a human suspension cell purification and change the expression vector to boost RAG production 6-fold. We use these purified RAG proteins to investigate V(D)J recombination on a mechanistic single molecule level. As a result, we are able to measure the binding statistics (dwell times and binding energies) of the initial RAG binding events with or without its co-factor high mobility group box protein 1 (HMGB1), and to characterize synapse formation at the single-molecule level yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage upon forming the synapse. We then go on to investigate HMGB1 further by measuring it compact single DNA molecules. We observed concentration dependent DNA compaction, differential DNA compaction depending on the divalent cation type, and found that at a particular HMGB1 concentration the percentage of DNA compacted is conserved across DNA lengths. Lastly, we investigate another HMGB protein called TFAM, which is essential for packaging the mitochondrial genome. We present crystal structures of TFAM bound to the heavy strand promoter 1 (HSP1) and to nonspecific DNA. We show TFAM dimerization is dispensable for DNA bending and transcriptional activation, but is required for mtDNA compaction. We propose that TFAM dimerization enhances mtDNA compaction by promoting looping of mtDNA.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
Experimental studies were conducted with the goals of 1) determining the origin of Pt- group element (PGE) alloys and associated mineral assemblages in refractory inclusions from meteorites and 2) developing a new ultrasensitive method for the in situ chemical and isotopic analysis of PGE. A general review of the geochemistry and cosmochemistry of the PGE is given, and specific research contributions are presented within the context of this broad framework.
An important step toward understanding the cosmochemistry of the PGE is the determination of the origin of POE-rich metallic phases (most commonly εRu-Fe) that are found in Ca, AJ-rich refractory inclusions (CAI) in C3V meteorites. These metals occur along with γNi-Fe metals, Ni-Fe sulfides and Fe oxides in multiphase opaque assemblages. Laboratory experiments were used to show that the mineral assemblages and textures observed in opaque assemblages could be produced by sulfidation and oxidation of once homogeneous Ni-Fe-PGE metals. Phase equilibria, partitioning and diffusion kinetics were studied in the Ni-Fe-Ru system in order to quantify the conditions of opaque assemblage formation. Phase boundaries and tie lines in the Ni-Fe-Ru system were determined at 1273, 1073 and 873K using an experimental technique that allowed the investigation of a large portion of the Ni-Fe-Ru system with a single experiment at each temperature by establishing a concentration gradient within which local equilibrium between coexisting phases was maintained. A wide miscibility gap was found to be present at each temperature, separating a hexagonal close-packed εRu-Fe phase from a face-centered cubic γNi-Fe phase. Phase equilibria determined here for the Ni-Fe-Ru system, and phase equilibria from the literature for the Ni-Fe-S and Ni-Fe-O systems, were compared with analyses of minerals from opaque assemblages to estimate the temperature and chemical conditions of opaque assemblage formation. It was determined that opaque assemblages equilibrated at a temperature of ~770K, a sulfur fugacity 10 times higher than an equilibrium solar gas, and an oxygen fugacity 106 times higher than an equilibrium solar gas.
Diffusion rates between -γNi-Fe and εRu-Fe metal play a critical role in determining the time (with respect to CAI petrogenesis) and duration of the opaque assemblage equilibration process. The diffusion coefficient for Ru in Ni (DRuNi) was determined as an analog for the Ni-Fe-Ru system by the thin-film diffusion method in the temperature range of 1073 to 1673K and is given by the expression:
DRuNi (cm2 sec-1) = 5.0(±0.7) x 10-3 exp(-2.3(±0.1) x 1012 erg mole-1/RT) where R is the gas constant and T is the temperature in K. Based on the rates of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system it is suggested that opaque assemblages equilibrated after the melting and crystallization of host CAI during a metamorphic event of ≥ 103 years duration. It is inferred that opaque assemblages originated as immiscible metallic liquid droplets in the CAI silicate liquid. The bulk compositions of PGE in these precursor alloys reflects an early stage of condensation from the solar nebula and the partitioning of V between the precursor alloys and CAI silicate liquid reflects the reducing nebular conditions under which CAI were melted. The individual mineral phases now observed in opaque assemblages do not preserve an independent history prior to CAI melting and crystallization, but instead provide important information on the post-accretionary history of C3V meteorites and allow the quantification of the temperature, sulfur fugacity and oxygen fugacity of cooling planetary environments. This contrasts with previous models that called upon the formation of opaque assemblages by aggregation of phases that formed independently under highly variable conditions in the solar nebula prior to the crystallization of CAI.
Analytical studies were carried out on PGE-rich phases from meteorites and the products of synthetic experiments using traditional electron microprobe x-ray analytical techniques. The concentrations of PGE in common minerals from meteorites and terrestrial rocks are far below the ~100 ppm detection limit of the electron microprobe. This has limited the scope of analytical studies to the very few cases where PGE are unusually enriched. To study the distribution of PGE in common minerals will require an in situ analytical technique with much lower detection limits than any methods currently in use. To overcome this limitation, resonance ionization of sputtered atoms was investigated for use as an ultrasensitive in situ analytical technique for the analysis of PGE. The mass spectrometric analysis of Os and Re was investigated using a pulsed primary Ar+ ion beam to provide sputtered atoms for resonance ionization mass spectrometry. An ionization scheme for Os that utilizes three resonant energy levels (including an autoionizing energy level) was investigated and found to have superior sensitivity and selectivity compared to nonresonant and one and two energy level resonant ionization schemes. An elemental selectivity for Os over Re of ≥ 103 was demonstrated. It was found that detuning the ionizing laser from the autoionizing energy level to an arbitrary region in the ionization continuum resulted in a five-fold decrease in signal intensity and a ten-fold decrease in elemental selectivity. Osmium concentrations in synthetic metals and iron meteorites were measured to demonstrate the analytical capabilities of the technique. A linear correlation between Os+ signal intensity and the known Os concentration was observed over a range of nearly 104 in Os concentration with an accuracy of ~ ±10%, a millimum detection limit of 7 parts per billion atomic, and a useful yield of 1%. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences. Matrix effects should be small compared to secondary ion mass spectrometry because ionization occurs in the gas phase and is largely independent of the physical properties of the matrix material. Resonance ionization of sputtered atoms can be applied to in situ chemical analysis of most high ionization potential elements (including all of the PGE) in a wide range of natural and synthetic materials. The high useful yield and elemental selectivity of this method should eventually allow the in situ measurement of Os isotope ratios in some natural samples and in sample extracts enriched in PGE by fire assay fusion.
Phase equilibria and diffusion experiments have provided the basis for a reinterpretation of the origin of opaque assemblages in CAI and have yielded quantitative information on conditions in the primitive solar nebula and cooling planetary environments. Development of the method of resonance ionization of sputtered atoms for the analysis of Os has shown that this technique has wide applications in geochemistry and will for the first time allow in situ studies of the distribution of PGE at the low concentration levels at which they occur in common minerals.
Resumo:
This thesis is divided into three chapters. In the first chapter we study the smooth sets with respect to a Borel equivalence realtion E on a Polish space X. The collection of smooth sets forms σ-ideal. We think of smooth sets as analogs of countable sets and we show that an analog of the perfect set theorem for Σ11 sets holds in the context of smooth sets. We also show that the collection of Σ11 smooth sets is ∏11 on the codes. The analogs of thin sets are called sparse sets. We prove that there is a largest ∏11 sparse set and we give a characterization of it. We show that in L there is a ∏11 sparse set which is not smooth. These results are analogs of the results known for the ideal of countable sets, but it remains open to determine if large cardinal axioms imply that ∏11 sparse sets are smooth. Some more specific results are proved for the case of a countable Borel equivalence relation. We also study I(E), the σ-ideal of closed E-smooth sets. Among other things we prove that E is smooth iff I(E) is Borel.
In chapter 2 we study σ-ideals of compact sets. We are interested in the relationship between some descriptive set theoretic properties like thinness, strong calibration and the covering property. We also study products of σ-ideals from the same point of view. In chapter 3 we show that if a σ-ideal I has the covering property (which is an abstract version of the perfect set theorem for Σ11 sets), then there is a largest ∏11 set in Iint (i.e., every closed subset of it is in I). For σ-ideals on 2ω we present a characterization of this set in a similar way as for C1, the largest thin ∏11 set. As a corollary we get that if there are only countable many reals in L, then the covering property holds for Σ12 sets.
Resumo:
Zirconocene aldehyde and ketone complexes were synthesized in high yield by treatment of zirconocene acyl complexes with trimethylaluminum or diisobutylaluminum hydride. These complexes, which are activated by dialkylaluminum chloride ligands, inserted unsaturated substrates such as alkynes, allenes, ethylene, nitriles, ketenes, aldehydes, ketones, lactones, and acid chlorides with moderate to high conversion. Insertion of aldehyde substrates yielded zirconocene diolate complexes with up to 20:1 (anti:syn) diastereoselectivity. The zirconocene diolates were hydrolyzed to afford unsymmetrical 1,2-diols in 40-80% isolated yield. Unsymmetrical ketones gave similar insertion yields with little or no diastereoselectivity. A high yielding one-pot method was developed that coupled carbonyl substrates with zirconocene aldehyde complexes that were derived from olefins by hydrozirconation and carbonylation. The zirconocene aldehyde complexes also inserted carbon monoxide and gave acyloins in 50% yield after hydrolysis.
The insertion reaction of aryl epoxides with the trimethylphoshine adduct of titanocene methylidene was examined. The resulting oxytitanacyclopentanes were carbonylated and oxidatively cleaved with dioxygen to afford y-lactones in moderate yields. Due to the instability and difficult isolation of titanocene methylidene trimethylphoshine adducts, a one-pot method involving the addition of catalytic amounts of trimethylphosphine to β,β-dimethyltitanacyclobutane was developed. A series of disubstituted aryl epoxides were examined which gave mixtures of diastereomeric insertion products. Based on these results, as well as earlier Hammett studies and labeling experiments, a biradical transition state intermediate is proposed. The method is limited to aryl substituted epoxide substrates with aliphatic examples showing no insertion reactivity.
The third study involved the use of magnesium chloride supported titanium catalysts for the Lewis acid catalyzed silyl group transfer condensation of enol silanes with aldehydes. The reaction resulted in silylated aldol products with as many as 140 catalytic turnovers before catalyst inactivation. Low diastereoselectivities favoring the anti-isomer were consistent with an open transition state involving a titanium atom bound to the catalyst surface. The catalysts were also used for the aldol group transfer polymerization of t-butyldimethylsilyloxy-1-ethene resulting in polymers with molecular weights of 5000-31,000 and molar mass dispersities of 1.5-2.8. Attempts to polymerize methylmethacrylate using GTP proved unsuccessful with these catalysts.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.