2 resultados para Interval forecasting

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proportion correct in two-alternative forcedchoice (2AFC) detection tasks often varies when the stimulus is presented in the first or in the second interval.Reanalysis of published data reveals that these order effects (or interval bias) are strong and prevalent, refuting the standard difference model of signal detection theory. Order effects are commonly regarded as evidence that observers use an off-center criterion under the difference model with bias. We consider an alternative difference model with indecision whereby observers are occasionally undecided and guess with some bias toward one of the response options. Whether or not the data show order effects, the two models fit 2AFC data indistinguishably, but they yield meaningfully different estimates of sensory parameters. Under indeterminacy as to which model governs 2AFC performance, parameter estimates are suspect and potentially misleading. The indeterminacy can be circumvented by modifying the response format so that observers can express indecision when needed. Reanalysis of published data collected in this way lends support to the indecision model. We illustrate alternative approaches to fitting psychometric functions under the indecision model and discuss designs for 2AFC experiments that improve the accuracy of parameter estimates, whether or not order effects are apparent in the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.