3 resultados para Generalized Weyl Fractional q-Integral Operator
em Universidade Complutense de Madrid
Resumo:
In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.
Resumo:
We introduce a new class of generalized isotropic Lipkin–Meshkov–Glick models with su(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of su(m+1) type. We evaluate in closed form the reduced density matrix of a block of Lspins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as a log L when L tends to infinity, where the coefficient a is equal to (m − k)/2 in the ground state phase with k vanishing magnon densities. In particular, our results show that none of these generalized Lipkin–Meshkov–Glick models are critical, since when L-->∞ their Rényi entropy R_q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized su(m+1) Lipkin–Meshkov–Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥3. Finally, in the su(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of su(3). This is also true in the su(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m + 1)-simplex in R^m whose vertices are the weights of the fundamental representation of su(m+1).
Resumo:
El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Cap tulos 1 y 2) est a dedicada a introducir estructura adicional en grupos que aparecen de manera natural en el contexto de la teor a de la forma. En la segunda parte (Cap tulo 3), se plantea c omo generalizar la teor a de espacios recubridores y, en particular, se propone una l nea de trabajo relacionada con la teor a de la forma. El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los que los autores introducen y utilizan algunas ultram etricas en el conjunto de los mor smos shape entre dos espacios topol ogicos punteados. En particular, si el dominio es (S1; 1); la construcci on realizada en [68] permite explicitar una ultram etrica en el grupo shape 1(X; x0) de un espacio m etrico compacto X; como ya fue observado en [69] y [80]. Si el espacio no es m etrico compacto, la construcci on nos lleva a utilizar el concepto de ultram etrica generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79]. En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio, de forma que la topolog a en 1(X; x0) sea una topolog a de grupo que permita detectar la (no) existencia de un recubridor universal para X: La forma de proceder sugerida es tomar en 1(X; x0)la toplog a cociente inducida por la topolog a compacto-abierta en el espacio de lazos (X; x0): Sin embargo, hay algunos errores en el art culo mencionado: en concreto, el error relacionado con el presente trabajo fue puesto de mani esto por P. Fabel en [33], mostrando que, en general, la operaci on de grupo en 1(X; x0)con la topolog a cociente no es continua. Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo fundamental con una topolog a, de forma que 1(X; x0) sea un grupo topol ogico y la proyecci on q (X; x0){u100000} 1(X; x0)sea continua...