2 resultados para Cosmological constant
em Universidade Complutense de Madrid
Resumo:
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ) = λ|ϕ|^n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c_eff^ 2 = ω = (n − 2)/(n + 2) with ω the effective equation of state. We also obtain the first order correction in k^ 2/ω_eff^ 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω_eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.
Resumo:
Electromagnetic energy injected into the universe above a few hundred TeV is expected to pile up as γ radiation in a relatively narrow energy interval below 100 TeV due to its interaction with the 2.7^°K background radiation. We present an upper limit (90% C.L.) on the ratio of primary γ to charged cosmic rays in the energy interval 65–160 TeV (80–200 TeV) of 10.3 • 10^−3 (7.8 • 10^−3). Data from the HEGRA cosmic-ray detector complex consisting of a wide angle Čerenkov array (AIROBICC) measuring the lateral distribution of air Čerenkov light and a scintillator array, were used with a novel method to discriminate γ-ray and hadron induced air showers. If the presently unmeasured universal far infrared background radiation is not too intense, the result rules out a topological-defect origin of ultrahigh energy cosmic rays for masses of the X particle released by the defects equal to or larger than about 10^16 GeV.