5 resultados para Convex

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a topological vector space (X, τ ), we consider the family LCT (X, τ ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ . We prove that for an infinite-dimensional reflexive Banach space (X, τ ), the cardinality of LCT (X, τ ) is at least c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimal capacities and locations of a sequence of landfills are studied, and the interactions between these characteristics are considered. Deciding the capacity of a landfill has some spatial implications since it affects the feasible region for the remaining landfills, and some temporal implications because the capacity determines the lifetime of the landfill and hence the moment of time when the next landfills should be constructed. Some general mathematical properties of the solution are provided and interpreted from an economic point of view. The resulting problem turns out to be non-convex and, therefore, it cannot be solved by conventional optimization techniques. Some global optimization methods are used to solve the problem in a particular case in order to illustrate how the solution depends on the parameter values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y).